
Module 1:
Introduction to C
This first chapter will cover assignment statements, arithmetic statements, loop statements,
conditional statements, and other fundamental rules for writing code in C.

Overview of C
Operator & If-Else Statement
Loop & Switch-Case
Nested Statements / Loops

Overview of C
INTRODUCTION TO C
LANGUAGE
C is a general-purpose programming language that is closely related to how computer machines
work. Although often considered difficult to learn, C is actually a simple language with vast
capabilities.

Here are some key points to note in C:

Case-sensitive: C distinguishes between uppercase and lowercase letters. For example,
printf and Printf are two different things.
Space-insensitive: Separators such as spaces, tabs, or new lines do not affect the
program.
Semicolon: Every statement must end with a semicolon (;).
Multiple Statements: Several statements can be written on the same line.

SIMPLE C PROGRAM: PRINTING
A LINE OF TEXT
The simplest C program is a program that prints text. Here is an example:

Output:

#include <stdio.h>

int main() {
 printf("Hello, World!\n");
 return 0;
}

Parts of the Program
1. Comment:

Single-line comments use // , while multi-line comments use /* ... */ .

// This is a single-line comment
/*
 This is a
 multi-line comment
*/

2. Header File:
Header files like stdio.h are required to use functions such as printf() or scanf() .

#include <stdio.h>

3. Main Function:
The main() function is the program’s entry point.
int main() indicates that the function returns an integer (0 for success, 1 or more for
failure).

int main() {
 // Program code
 return 0; // Indicates successful program execution
}

4. The printf() Function:
This function is used to print output to the screen.
\n is an escape sequence meaning newline (new row).

printf("Hello, World!\n");

VARIABLES AND DATA TYPES
Variables are "containers" for storing values. The data type determines the kind of value that can
be stored in a variable.

Hello, World!

Types of Data in C
1. int - For integer values.

int number1; // Variable without initialization (random value)
int number2 = 20; // Variable initialized with value 20

2. float - For decimal values.

float decimal = 3.14;

3. char - For storing a single character.

char letter = 'A';

Here is a complete diagram of data types in C:
Alt textImage not found or type unknown

Naming Variables
Variable names must start with a letter or an underscore (_).
Spaces or punctuation marks (such as ?, !, etc.) are not allowed.
Case-sensitive: name and Name are different variables.

Example:

Complete Example
Here is an example program using variables and data types:

int age = 20; // Valid
float height = 170; // Valid
char initial = 'A'; // Valid
int ageOfFather = 45; // Valid

int 2age = 20; // Invalid (cannot start with a number)

#include <stdio.h>

Output:

int main() {
 int age = 25;
 float height = 170.5;
 char initial = 'A';

 printf("Age: %d years\n", age);
 printf("Height: %.2f cm\n", height);
 printf("Initial: %c\n", initial);

 return 0;
}

Age: 25 years
Height: 170.50 cm
Initial: A

Operator & If-Else Statement
1. Arithmetic Operators
a) Addition (+)
Adds two values.

b) Subtraction (-)
Subtracts one value from another.

c) Multiplication (*)
Multiplies two values.

d) Division (/)
Divides two values.

int a = 5, b = 3;
int result = a + b; // Result: 8
printf("a + b = %d\n", result); // Output: a + b = 8

int a = 10, b = 4;
int result = a - b; // Result: 6
printf("a - b = %d\n", result); // Output: a - b = 6

int a = 7, b = 3;
int result = a * b; // Result: 21
printf("a * b = %d\n", result); // Output: a * b = 21

e) Modulus (%)
Returns the remainder of a division.

f) Increment (++)
Increases the value of a variable by 1.

g) Decrement (--)
Decreases the value of a variable by 1.

2. Logical Operators
a) Logical AND (&&)
Returns true if both conditions are true.

int a = 15, b = 5;
int result = a / b; // Result: 3
printf("a / b = %d\n", result); // Output: a / b = 3

int a = 10, b = 3;
int result = a % b; // Result: 1 (since 10 ÷ 3 = 3 remainder 1)
printf("a %% b = %d\n", result); // Output: a % b = 1

int a = 5;
a++; // Result: 6
printf("a = %d\n", a); // Output: a = 6

int a = 8;
a--; // Result: 7
printf("a = %d\n", a); // Output: a = 7

b) Logical OR (||)
Returns true if at least one condition is true.

c) Logical NOT (!)
Reverses the condition’s result.

3. Comparison Operators
Comparison operators are used to compare two values and return a boolean (true or false).

a) == (Equal To)
Returns true if both operands are equal.

int a = 5, b = 10;
if (a > 3 && b < 15) {
 printf("Both are true!\n"); // Output: Both are true!
}

int a = 7, b = 12;
if (a > 10 || b < 5) {
 printf("At least one is true!\n"); // Will not execute since both conditions are false.
}

int a = 10;
if (!(a < 5)) {
 printf("a is not less than 5!\n"); // Output: a is not less than 5!
}

int a = 5, b = 5;
if (a == b) {
 printf("a and b are equal\n");
}

b) != (Not Equal To)
Returns true if the two operands are not equal.

c) > (Greater Than)
Returns true if the left operand is greater than the right.

d) < (Less Than)
Returns true if the left operand is less than the right.

e) >= (Greater Than or Equal To)
Returns true if the left operand is greater than or equal to the right.

int a = 5, b = 10;
if (a != b) {
 printf("a and b are different\n");
}

int a = 10, b = 5;
if (a > b) {
 printf("a is greater than b\n");
}

int a = 5, b = 10;
if (a < b) {
 printf("a is smaller than b\n");
}

int a = 10, b = 10;
if (a >= b) {
 printf("a is greater than or equal to b\n");
}

f) <= (Less Than or Equal To)
Returns true if the left operand is less than or equal to the right.

4. Assignment Operators
a) Simple Assignment (=)
Assigns a value to a variable.

b) Compound Assignment (+=, -=, *=,
/=, %=)
Combines arithmetic operations with assignment.

int a = 5, b = 10;
if (a <= b) {
 printf("a is smaller than or equal to b\n");
}

int a;
a = 10; // a now holds 10
printf("a = %d\n", a); // Output: a = 10

int a = 5;
a += 3; // Equivalent to a = a + 3 → Result: 8
a -= 2; // Equivalent to a = a - 2 → Result: 6
a *= 4; // Equivalent to a = a * 4 → Result: 24
a /= 6; // Equivalent to a = a / 6 → Result: 4
a %= 3; // Equivalent to a = a % 3 → Result: 1
printf("Final result of a = %d\n", a); // Output: Final result of a = 1

5. If-Else Statement Structure
a) If
Executes code if the condition is true.

b) If-Else
Executes an alternative code block if the condition is false.

c) Else-If
Adds additional conditions.

int number = 10;
if (number > 5) {
 printf("Number is greater than 5!\n"); // Output: Number is greater than 5!
}

int number = 3;
if (number > 5) {
 printf("Number is greater than 5!\n");
} else {
 printf("Number is not greater than 5!\n"); // Output: Number is not greater than 5!
}

int number = 7;
if (number < 5) {
 printf("Number is less than 5!\n");
} else if (number == 5) {
 printf("Number is equal to 5!\n");
} else {
 printf("Number is greater than 5!\n"); // Output: Number is greater than 5!
}

Loop & Switch-Case
Loop & Switch-Case

1. While Loop
A while loop is a function used to execute the same block of code repeatedly. The loop continues
execution as long as the given condition evaluates to 1 (TRUE) or more. When the condition
evaluates to 0 (FALSE), the loop stops and the program proceeds to the next lines of code.

Similar to an if statement, the while loop is built into the C programming language, meaning there
is no need to declare or return its value explicitly.

Syntax:

The condition is checked before executing the loop body:

If condition is TRUE , the code inside the loop is executed.
If condition is FALSE , the loop terminates.

Example 1: Counting from 1 to 10

while (condition) {
 // Code to be executed repeatedly
}

#include <stdio.h>

int main() {
 int n = 1;

 while (n <= 10) { // Loop runs while n is less than or equal to 10
 printf("%d\n", n);

Output:

Infinite Loop
If the condition never changes or is always TRUE , the loop will run indefinitely.

Example 2: Infinite Loop (Press Ctrl+C to Stop)

Output (Repeats Forever):

 n++; // Increment n by 1 in each iteration
 }

 return 0;
}

1
2
3
4
5
6
7
8
9
10

#include <stdio.h>

int main() {
 while (1) { // The condition is always TRUE
 printf("This loop will run forever!\n");
 }

 return 0;
}

This loop will run forever!
This loop will run forever!

Using break to Exit a While Loop
The break statement can be used to exit a while loop forcefully.

Example 3: Using break to Stop the Loop

Output:

Using continue to Skip an Iteration
The continue statement is used to skip the remaining code in the loop for a specific iteration.

This loop will run forever!
...

#include <stdio.h>

int main() {
 int n = 1;

 while (1) { // Infinite loop
 printf("%d\n", n);
 if (n == 5) {
 break; // Exit the loop when n reaches 5
 }
 n++;
 }

 return 0;
}

1
2
3
4
5

Example 4: Skipping a Number (Skipping 5)

Output:

2. DO-WHILE LOOP
The do-while loop is similar to the while loop. The difference lies in the execution order:

In a while loop, the condition is checked before executing the code.
In a do-while loop, the code is executed at least once before checking the condition.

#include <stdio.h>

int main() {
 int n = 0;

 while (n < 10) {
 n++;

 if (n == 5) {
 continue; // Skip printing 5
 }

 printf("%d\n", n);
 }

 return 0;
}

1
2
3
4
6
7
8
9
10

Syntax:

Example 5: Difference Between While and Do-While

Output:

Explanation:

The while loop does not execute because n > 0 is FALSE .
The do-while loop runs once before checking the condition.

do {
 // Code to be executed
} while (condition);

#include <stdio.h>

int main() {
 int n = 0;

 printf("Using while loop:\n");
 while (n > 0) {
 printf("This will NOT be printed.\n");
 }

 printf("\nUsing do-while loop:\n");
 do {
 printf("This WILL be printed at least once.\n");
 } while (n > 0);

 return 0;
}

Using while loop:

Using do-while loop:
This WILL be printed at least once.

3. FOR LOOP
A for loop is an advanced version of the while loop. It allows for a specific range and controlled
iterations.

The for loop consists of three components:

1. Initialization (init) → Sets the starting value. (e.g., i = 1;)
2. Condition (condition) → Determines when the loop stops. (e.g., i <= 10;)
3. Increment (increment) → Updates the loop variable. (e.g., i++)

Syntax:

Example 6: Printing Numbers 1 to 10

Output:

for (initialization; condition; increment) {
 // Code to be executed
}

#include <stdio.h>

int main() {
 for (int i = 1; i <= 10; i++) {
 printf("%d\n", i);
 }

 return 0;
}

1
2
3
4
5
6
7

Example 7: Loop with Step Size of 2

Output:

4. SWITCH-CASE STATEMENT
A switch-case statement is an alternative to if-else-if for comparing a variable against multiple fixed
values.

If the variable matches a case , the corresponding block of code is executed.
If no cases match, the default case is executed (if present).
The break statement prevents fall-through, meaning once a match is found, execution
stops.

Syntax:

8
9
10

#include <stdio.h>

int main() {
 for (int i = 0; i <= 10; i += 2) {
 printf("%d\n", i);
 }

 return 0;
}

0
2
4
6
8
10

Example 8: Simple Menu System

switch (variable) {
 case value1:
 // Code to execute
 break;
 case value2:
 // Code to execute
 break;
 default:
 // Code if no cases match
}

#include <stdio.h>

int main() {
 int choice;

 printf("Select an option:\n");
 printf("1. Start\n");
 printf("2. Settings\n");
 printf("3. Exit\n");
 printf("Enter your choice: ");
 scanf("%d", &choice);

 switch (choice) {
 case 1:
 printf("Game Starting...\n");
 break;
 case 2:
 printf("Opening Settings...\n");
 break;
 case 3:
 printf("Exiting Program...\n");
 break;
 default:
 printf("Invalid Choice!\n");
 }

Example Output:

Example 9: Days of the Week

 return 0;
}

Select an option:
1. Start
2. Settings
3. Exit
Enter your choice: 2
Opening Settings...

#include <stdio.h>

int main() {
 int day;

 printf("Enter a number (1-7) for the day of the week: ");
 scanf("%d", &day);

 switch (day) {
 case 1:
 printf("Sunday\n");
 break;
 case 2:
 printf("Monday\n");
 break;
 case 3:
 printf("Tuesday\n");
 break;
 case 4:
 printf("Wednesday\n");
 break;
 case 5:
 printf("Thursday\n");
 break;
 case 6:

Example Output:

 printf("Friday\n");
 break;
 case 7:
 printf("Saturday\n");
 break;
 default:
 printf("Invalid input! Enter a number between 1 and 7.\n");
 }

 return 0;
}

Enter a number (1-7) for the day of the week: 5
Thursday

Nested Statements / Loops
1. NESTED IF STATEMENT
A nested if statement is an if condition inside another if block. This allows checking multiple
conditions in a hierarchical manner.

Syntax:

Example 1: Nested If Statement

if (condition1) {
 if (condition2) {
 // Code to execute if both conditions are true
 }
}

#include <stdio.h>

int main() {
 int num = 10;

 if (num > 0) { // Outer if
 printf("The number is positive.\n");

 if (num % 2 == 0) { // Inner if
 printf("The number is even.\n");
 }
 }

 return 0;
}

Output:

2. NESTED WHILE LOOP
A nested while loop is a while loop inside another while loop. The inner loop executes
completely for each iteration of the outer loop.

Syntax:

Example 2: Multiplication Table using
Nested While Loop

The number is positive.
The number is even.

while (condition1) {
 while (condition2) {
 // Code to execute
 }
}

#include <stdio.h>

int main() {
 int i = 1, j;

 while (i <= 5) {
 j = 1;
 while (j <= 5) {
 printf("%d\t", i * j);
 j++;
 }
 printf("\n");

Output:

3. NESTED DO-WHILE LOOP
A nested do-while loop is a do-while loop inside another do-while loop. The inner loop will always
execute at least once before checking the condition.

Syntax:

Example 3: Number Grid using
Nested Do-While

 i++;
 }

 return 0;
}

1 2 3 4 5
2 4 6 8 10
3 6 9 12 15
4 8 12 16 20
5 10 15 20 25

do {
 do {
 // Code to execute
 } while (condition2);
} while (condition1);

#include <stdio.h>

int main() {

Output:

4. NESTED FOR LOOP
A nested for loop is a for loop inside another for loop. The inner loop runs completely for
each iteration of the outer loop.

Syntax:

 int i = 1, j;

 do {
 j = 1;
 do {
 printf("%d ", j);
 j++;
 } while (j <= 5);

 printf("\n");
 i++;
 } while (i <= 5);

 return 0;
}

1 2 3 4 5
1 2 3 4 5
1 2 3 4 5
1 2 3 4 5
1 2 3 4 5

for (initialization; condition1; increment) {
 for (initialization; condition2; increment) {
 // Code to execute
 }
}

Example 4: Printing a Square Pattern

Output:

5. NESTED SWITCH-CASE
A nested switch-case is when a switch statement is placed inside another switch statement.

Syntax:

#include <stdio.h>

int main() {
 for (int i = 1; i <= 5; i++) {
 for (int j = 1; j <= 5; j++) {
 printf("* ");
 }
 printf("\n");
 }

 return 0;
}

* * * * *
* * * * *
* * * * *
* * * * *
* * * * *

switch (variable1) {
 case value1:
 switch (variable2) {
 case value2:
 // Code to execute

Example 5: Nested Switch-Case for
User Role and Permission

 break;
 }
 break;
}

#include <stdio.h>

int main() {
 int role = 1; // 1 = Admin, 2 = User
 int action = 2; // 1 = View, 2 = Edit

 switch (role) {
 case 1:
 printf("Role: Admin\n");
 switch (action) {
 case 1:
 printf("Action: Viewing data\n");
 break;
 case 2:
 printf("Action: Editing data\n");
 break;
 default:
 printf("Invalid action!\n");
 }
 break;

 case 2:
 printf("Role: User\n");
 switch (action) {
 case 1:
 printf("Action: Viewing data\n");
 break;
 default:
 printf("Users cannot edit data!\n");

Example Output:

 }
 break;

 default:
 printf("Invalid role!\n");
 }

 return 0;
}

Role: Admin
Action: Editing data

