
Module 6: Searching
Searching Algorithms
Compare String
Searching in Struct

Searching Algorithms
Searching is an algorithm used to find a specific data element within a dataset. In this module, we
will discuss two common searching methods: Linear Search and Binary Search.

Linear Search
The simplest and most commonly used searching algorithm is the sequential or linear search. The
way this algorithm works is by comparing the search key with each element in the list sequentially
until the desired data is found or until all elements have been checked.

Below is an illustration of the linear search process. The search key is the number 3, and it is
compared one by one until the number 3 is found.

Example Program using Linear Search:
#include <stdio.h>
#define SIZE 10

int main() {
 int arr[SIZE] = {15, 7, 2, 10, 27, 77, 32, 43, 69, 56};
 int i, input;

https://learn.digilabdte.com/uploads/images/gallery/2025-02/GUK9BkxsLfaQjHlL-image-1740182138601.png

Binary Search
Binary search is an algorithm that searches for a data element within a sorted list. This method is
faster than Linear Search but requires the list to be sorted in ascending order beforehand. The
algorithm repeatedly divides the search range into two halves. If the search key is smaller than the
middle element, the search continues in the left half. If the search key is larger, the search
continues in the right half.

Below is an illustration of the binary search process. The input key is 8, so the search range is
reduced to the right half of the list.

Example Program using Binary Search:

 printf("Enter the number to search: ");
 scanf("%d", &input);

 for (i = 0; i < SIZE; i++) {
 if (arr[i] == input) {
 printf("\n%d is located at position %d\n", input, i+1);
 break;
 }
 }

 if (i == SIZE) {
 printf("\nNot found in the list!\n");
 }

 return 0;
}

https://learn.digilabdte.com/uploads/images/gallery/2025-02/zWJRieZjHVjK6yxg-image-1740182163931.png

#include <stdio.h>
#define SIZE 7

int main() {
 int arr[SIZE] = {3, 8, 16, 29, 32, 47, 66};
 int left, right, middle, input;

 printf("Enter the number to search: ");
 scanf("%d", &input);

 left = 0;
 right = SIZE - 1;

 while (left <= right) {
 middle = (left + right) / 2;

 // Check if the middle element is the target
 if (arr[middle] == input) {
 printf("\n%d is located at position %d\n", input, middle+1);
 break;
 }

 // Adjust search range
 if (arr[middle] < input)
 left = middle + 1;
 else
 right = middle - 1;
 }

 if (left > right)
 printf("\nNot found in the list!\n");

 return 0;
}

Compare String
Introduction
The strcmp function is part of the standard C library and is used to compare two strings. This
function determines the lexicographical order of the given strings.

Syntax

Parameters:
str1 : Array representing the first string.
str2 : Array representing the second string.

Return Value:
Returns a value less than 0 if str1 is less than str2 .
Returns 0 if str1 is equal to str2 .
Returns a value greater than 0 if str1 is greater than str2 .

Explanation
The strcmp function compares two strings character by character in a lexicographical manner. The
comparison stops when a difference is found or when the end of one of the strings is reached.

Example Usage
Below is a simple C program demonstrating the use of strcmp :

#include <string.h>

int strcmp(char str1[], char str2[]);

#include <stdio.h>
#include <string.h>

Expected Output:

In the example above, strcmp(str1, str2) returns 0 because both strings are identical. However,
strcmp(str1, str3) returns a nonzero value because of the difference in letter casing.

Using strcmp in Searching
The strcmp function can also be used in searching within an array of strings. Below is an example
demonstrating how to search for a string in an array using strcmp :

int main() {
 char str1[] = "Geeks";
 char str2[] = "Geeks";
 char str3[] = "GEEKS";

 // Comparing str1 and str2
 int result = strcmp(str1, str2);
 if (result == 0) {
 printf("str1 and str2 are equal.\n");
 } else {
 printf("str1 and str2 are different.\n");
 }

 // Comparing str1 and str3
 result = strcmp(str1, str3);
 if (result == 0) {
 printf("str1 and str3 are equal.\n");
 } else {
 printf("str1 and str3 are different.\n");
 }

 return 0;
}

str1 and str2 are equal.
str1 and str3 are different.

Expected Output:

This program takes user input for a name and searches for it in the predefined list using strcmp .

Important Notes
The strcmp function is case-sensitive. To perform a case-insensitive comparison, you
can use strcasecmp (available on some platforms) or convert both strings to lowercase or

#include <stdio.h>
#include <string.h>
#define SIZE 5

int main() {
 char names[SIZE][20] = {"Alice", "Bob", "Charlie", "David", "Eve"};
 char search[20];
 int found = 0;

 printf("Enter a name to search: ");
 scanf("%s", search);

 for (int i = 0; i < SIZE; i++) {
 if (strcmp(names[i], search) == 0) {
 printf("%s found at position %d\n", search, i + 1);
 found = 1;
 break;
 }
 }

 if (!found) {
 printf("%s not found in the list.\n", search);
 }

 return 0;
}

Enter a name to search: Bob
Bob found at position 2

uppercase before comparing.
Ensure both string arrays are valid and contain null-terminated strings ('\0') to avoid
undefined behavior.

Searching in Struct
Introduction
In C, structures (struct) allow grouping different types of data together. Sometimes, we need to
search for specific records inside an array of structures. This module explains how to perform
searching operations on an array of structures in C using both Linear Search and Binary Search.

Defining a Structure
Before searching, let's define a simple structure to store student information:

Here, the Student struct contains three fields:

id : an integer representing the student ID.
name : a character array storing the student's name.
grade : a floating-point number representing the student's grade.

Linear Search on Struct Array
Linear search iterates through each element in the struct array until a match is found.

#include <stdio.h>
#include <string.h>

#define SIZE 5

struct Student {
 int id;
 char name[20];
 float grade;
};

Example: Searching for a Student by
Name

Output Example:

int main() {
 struct Student students[SIZE] = {
 {101, "Alice", 85.5},
 {102, "Bob", 78.0},
 {103, "Charlie", 92.0},
 {104, "David", 88.5},
 {105, "Eve", 90.0}
 };

 char searchName[20];
 int found = 0;

 printf("Enter student name to search: ");
 scanf("%s", searchName);

 for (int i = 0; i < SIZE; i++) {
 if (strcmp(students[i].name, searchName) == 0) {
 printf("Student found: ID=%d, Name=%s, Grade=%.2f\n", students[i].id, students[i].name,
students[i].grade);
 found = 1;
 break;
 }
 }

 if (!found) {
 printf("Student not found!\n");
 }

 return 0;
}

Binary Search on Struct Array
Binary search is faster than linear search but requires the array to be sorted. It repeatedly divides
the array into halves to locate the desired element.

Example: Searching for a Student by ID
(Binary Search)

Enter student name to search: Bob
Student found: ID=102, Name=Bob, Grade=78.00

int binarySearch(struct Student students[], int left, int right, int key) {
 while (left <= right) {
 int mid = (left + right) / 2;
 if (students[mid].id == key)
 return mid;
 if (students[mid].id < key)
 left = mid + 1;
 else
 right = mid - 1;
 }
 return -1;
}

int main() {
 struct Student students[SIZE] = {
 {101, "Alice", 85.5},
 {102, "Bob", 78.0},
 {103, "Charlie", 92.0},
 {104, "David", 88.5},
 {105, "Eve", 90.0}
 };

 int searchID;
 printf("Enter student ID to search: ");
 scanf("%d", &searchID);

Output Example:

Conclusion
Linear Search is simple and works on unsorted data but is slower for large datasets.
Binary Search is much faster but requires the array to be sorted.
The strcmp function is useful for searching strings within structures.

 int result = binarySearch(students, 0, SIZE - 1, searchID);
 if (result != -1)
 printf("Student found: ID=%d, Name=%s, Grade=%.2f\n", students[result].id, students[result].name,
students[result].grade);
 else
 printf("Student not found!\n");

 return 0;
}

Enter student ID to search: 103
Student found: ID=103, Name=Charlie, Grade=92.00

