
Arrays in C

In C programming, an array is a collection of elements of the same data type stored in contiguous
memory locations. Arrays provide a convenient way to manage multiple related variables under a
single name, allowing for efficient data manipulation and access.

Declaration and Initialization
To declare an array in C, specify the data type of its elements, the array name, and the number of
elements (size) it will hold.

https://learn.digilabdte.com/uploads/images/gallery/2025-02/hSicJtjbzLkVd6rG-image-1739318648785.png
https://learn.digilabdte.com/uploads/images/gallery/2025-02/4u16X97mGSX748Lj-image-1739318672790.png

Syntax:

Example:

Arrays can be initialized at the time of declaration:

If the array size is omitted, the compiler determines it based on the number of initializers:

Accessing Array Elements

data_type array_name[array_size];

int numbers[5]; // Declares an array of 5 integers

int numbers[5] = {1, 2, 3, 4, 5};
int cars[5];

int numbers[] = {1, 2, 3, 4, 5}; // Compiler sets array size to 5

https://learn.digilabdte.com/uploads/images/gallery/2025-02/cWjIbFZE4drfMSvS-image-1739318696430.png

Array elements are accessed using their index, starting from 0 up to array_size - 1 .

Example:

In this example, numbers[2] accesses the third element of the array, which is 30 .

Types of Arrays
One-Dimensional Arrays

#include <stdio.h>

int main() {
 int numbers[] = {10, 20, 30, 40, 50};
 printf("%d\n", numbers[2]); // Outputs: 30
 return 0;
}

https://learn.digilabdte.com/uploads/images/gallery/2025-02/4L8jFZYVpK44uUY3-image-1739318733849.png

A one-dimensional array is a linear collection of elements.

Declaration:

Example:

Multidimensional Arrays

data_type array_name[size];

float temperatures[7]; // Array to store temperatures for a week

https://learn.digilabdte.com/uploads/images/gallery/2025-02/sFFWDhSD0V16fwXq-image-1739318758889.png

C supports multidimensional arrays, commonly used for matrices or tables. The most common is
the two-dimensional array.

Declaration of a 2D Array:

Example:

Initialization:

Accessing Elements:

data_type array_name[rows][columns];

int matrix[3][4]; // 2D array with 3 rows and 4 columns

int matrix[3][4] = {
 {1, 2, 3, 4},
 {5, 6, 7, 8},
 {9, 10, 11, 12}
};

https://learn.digilabdte.com/uploads/images/gallery/2025-02/gSyOF5iOsQB2lw8m-image-1739318776364.png

Advantages of Arrays
Efficient Data Management --> Arrays allow for efficient storage and retrieval of
multiple elements using a single identifier.
Random Access --> Elements can be accessed directly using their index, enabling quick
data retrieval.
Memory Efficiency --> Storing elements in contiguous memory locations reduces
memory overhead.

Limitations of Arrays
Fixed Size --> Once declared, the size of an array cannot be changed during runtime.
Homogeneous Elements --> Arrays can only store elements of the same data type.
Lack of Boundary Checking --> C does not perform automatic bounds checking, which
can lead to undefined behavior if indices are accessed out of range.

Relationship Between Arrays and
Pointers
In C, the name of an array acts as a pointer to its first element. This means that array_name is
equivalent to &array_name[0] . However, there are differences between arrays and pointers,
especially in terms of memory allocation and how they are used in expressions.

Example:

Here, ptr is a pointer to an integer, and it points to the first element of the numbers array.

int value = matrix[1][2]; // Accesses element at second row, third column (value is 7)

int numbers[] = {10, 20, 30};
int *ptr = numbers; // ptr now points to the first element of numbers

Revision #2
Created 11 February 2025 23:41:48 by YP
Updated 12 February 2025 00:07:04 by YP

