
Function
In C programming, a function is a block of statements that performs a specific task when called.
Functions enhance modularity and code reusability, allowing developers to break down complex
problems into manageable sub-tasks. In other programming languages, functions are also referred
to as subroutines or procedures.

Advantages of Using Functions
Modularity --> Functions allow the decomposition of a program into smaller, manageable
sections, making the code easier to understand and maintain.
Code Reusability --> Once a function is defined, it can be reused multiple times
throughout the program, reducing redundancy.
Ease of Testing --> Individual functions can be tested independently, facilitating
debugging and validation.

Function Components

https://learn.digilabdte.com/uploads/images/gallery/2025-02/SYa0rMb9qOMCRIGK-image-1739317636696.png

A typical function in C consists of:

1. Return Type --> Specifies the type of value the function returns. If no value is returned,
the return type is void .

2. Function Name --> An identifier for the function, following the same naming conventions
as variables.

3. Parameters (Optional) --> Variables that accept values from the function call. Functions
can have zero or more parameters.

4. Function Body --> A block of code enclosed in {} braces that defines the operations
performed by the function.

Function Declaration (Prototype)
A function declaration, or prototype, informs the compiler about a function's name, return type,
and parameters before its actual definition. This is essential for ensuring that function calls are
correctly matched with their definitions.

Syntax:

Example:

This prototype declares a function named add that takes two integer parameters and returns an
integer.

Function Definition

return_type function_name(parameter_type1 parameter1, parameter_type2 parameter2, ...);

int add(int a, int b);

The function definition provides the actual implementation.

Syntax:

Example:

This function add takes two integers and returns their sum.

Function Call

return_type function_name(parameter_type1 parameter1, parameter_type2 parameter2, ...) {
 // Function body
 return value; // if return_type is not void
}

int add(int a, int b) {
 return a + b;
}

https://learn.digilabdte.com/uploads/images/gallery/2025-02/I2RxiOSlYbKAUv4T-image-1739317784250.png

To execute a function, you call it by using its name followed by arguments in parentheses.

Syntax:

Example:

Here, the add function is called with arguments 5 and 3 , and the returned value is stored in
result .

Types of Functions
1. Standard Library Functions --> Predefined functions provided by C's standard library,

such as printf() , scanf() , and strlen() . To use these functions, include the appropriate
header files (e.g., #include <stdio.h> for printf()).

2. User-Defined Functions --> Functions created by the programmer to perform specific
tasks within the program.

function_name(argument1, argument2, ...);

int result = add(5, 3); // result now holds the value 8

https://learn.digilabdte.com/uploads/images/gallery/2025-02/YRxeOzAoY7NlNPS0-image-1739317803721.png

Function Parameters and Return
Values
Functions can be categorized based on their parameters and return values:

No parameters and no return value:

void displayMessage() {
 printf("Hello, World!\n");
}

Parameters but no return value:

void printSum(int a, int b) {
 printf("Sum: %d\n", a + b);
}

No parameters but returns a value:

int getNumber() {
 return 42;
}

Parameters and returns a value:

int multiply(int a, int b) {
 return a * b;
}

Understanding these combinations allows for flexible function design tailored to specific needs.

Inline Functions
In C, an inline function is a special type of function whose function call is replaced with the actual
code of the function rather than being invoked through the usual function call mechanism,
potentially improving performance by reducing function call overhead. It is declared using the
inline keyword and is generally used for small and frequently used functions.

Example:

In this example, calls to square(y) may be replaced with y * y during compilation, eliminating the
function call overhead.

Conclusion
Functions are fundamental to structured programming in C, promoting modularity, reusability, and
maintainability. By understanding how to declare, define, and utilize functions, programmers can
write efficient and organized code.

inline int square(int x) {
 return x * x;
}

Revision #3
Created 11 February 2025 23:41:05 by YP
Updated 11 February 2025 23:52:05 by YP

