
C Programming
C Programming Basics.

Introduction to C

What is the C programming language?

If Statement & While Loop

If Statement & While Loop

Introduction to C
Dip your toes into C programming.

Introduction to C

What is the C programming
language?
History of C
C is a general-purpose programming language that was originally designed for and implemented
on the UNIX operating system by Dennis Ritchie of Bell Labs in 1972. It is the successor of the B
programming language which stems from BCPL (Basic Combined Programming Language)
designed by Martin Richards in 1967. I guess the name makes sense now.

A Compiled Language
C is a compiled language. Compiled languages, unlike interpreted languages such as Python,
undergoes a process called compilation by compiler programs that transforms humanly written
codes into machine codes that can be understood by the computer.

Imagine writing a book in Indonesian and you want to reach audiences that solely speaks German.
You might want to ask a translator to translate each words in your book from Indonesian to German
before being distributed to German audiences. It would take some time translating every single
word in the book, but when it is all done, German audiences might easily understand your book
better and quicker!

CompilationImage not found or type unknown

Why C?
C is a middle-level programming language. It has easy-to-learn syntaxes akin to high-level
languages while still giving functionalities and controls of low-level languages. Due to this, C can be
used to write a wide variety of programs from systems programming (interface between the
hardware and users such as operating systems, drivers, and embedded systems) to application

https://en.wikipedia.org/wiki/Unix
https://en.wikipedia.org/wiki/Dennis_Ritchie
https://en.wikipedia.org/wiki/BCPL
https://en.wikipedia.org/wiki/Martin_Richards_(computer_scientist)

softwares or even video games like DOOM.

If Statement & While Loop

If Statement & While Loop

If Statement & While Loop
If Statement
An if statement is a function used to allow a program to choose which code to execute and which
to ignore. It does this by checking if the given argument results in a value of 1 (TRUE) or 0 (FALSE)
and executing different code accordingly. Similar to printf() or scanf() , the if statement does not
need to be declared or have its return value written because it is built into the C language.

Here are the syntaxes of the if statement in C:

if (argument) { code to be executed }
This is the most commonly used syntax. If the argument results in a value of 1, the code within the
curly braces will be executed; otherwise, if it's 0, the code will not be executed.

else if (argument) { code to be executed }
This syntax works the same way as if() , but it is only used if you have already created an if
statement and want to add a different option for the program. else if() can be created multiple
times to give the program more diverse options.

else { code to be executed }
This syntax is only used if you want to provide a final option for the program. Note that else does
not require an argument, so if none of the previous if statements are met, only the code within
else will be executed.

Below is an example program that compares two numbers:

#include <stdio.h>

int main(void) {

 int angkal = 1;

Output:

While Loop
A while loop is a function used to execute the same code repeatedly. The while loop will continue to
repeat the code execution as long as the given argument results in a value of 1 (TRUE) or more.
When the argument results in a value of 0 (FALSE), the program will stop looping and execute the
next code. Like the if statement, the while loop is also built into the C language, so it does not need
to be declared or have its return value written.

For example, the code within the while loop in this program will be executed repeatedly as long as
n <= 10 . In each loop, the value of n is incremented by 1, so there will be a condition where n >

10 .

 int angka2 = 2;

 if (angkal < angka2) {
 printf("angkal lebih kecil dari angka2. \n");
 } else if (angkal == angka2) {
 printf("angkal sama dengan angka2.\n");
 } else {
 printf("angkal lebih besar dari angka2.\n");
 }

}

C:\Users\Desktop\new 1.exe

angkal lebih kecil dari angka2.

Process exited after 0.05168 seconds with return value 0
Press any key to continue

while(condition) {
 // Code to be executed repeatedly
}

#include <stdio.h>

Output:

It is also important to know that a while loop can repeat execution indefinitely if the argument
never changes, in other words, it always has a value of 1 or more.

int main(void) {

 int n = 1;

 while (n <= 10) {
 printf("n = %d\n", n);
 n++;
 }

 return 0;
}

n = 1
n = 2
n = 3
n = 4
n = 5
n = 6
n = 7
n = 8
n = 9
n = 10

Process exited after 0.04058 seconds with return value 0
Press any key to continue

#include <stdio.h>

int main(void) {

 while (1) {
 printf("infinite loop! ");
 }

 return 0;
}

Output:

infinite loop! infinite loop! infinite loop! infinite loop! infinite loop! infinite loop! infinite loop! infinite loop! infinite
loop! infinite loop! infinite loop! infinite loop! infinite loop! infinite loop! infinite loop! infinite loop! infinite loop!
infinite loop! infinite loop! infinite loop! infinite loop! infinite loop! infinite loop! infinite loop! infinite loop! infinite
loop! infinite loop! infinite loop! infinite loop! infinite loop! infinite loop! infinite loop! infinite loop! infinite loop!
infinite loop! infinite loop! infinite loop! infinite loop! infinite loop! infinite loop! infinite loop! infinite loop! infinite
loop! infinite loop! infinite loop! infinite loop! infinite loop! infinite loop! infinite loop! infinite loop! infinite loop!
infinite loop! infinite loop! infinite loop! infinite loop! infinite loop! infinite loop! infinite loop! infinite loop! infinite
loop! infinite loop! infinite loop! infinite loop! infinite loop! infinite loop! infinite loop! infinite loop! infinite loop!
infinite loop! infinite loop!...

