
Module 4: Testbench
Testbench and Port Mapping
Testbench in Combinational Circuit
Testbench Architecture Models, Assert, and Report
Testbench for Sequential Circuit
Read and Write File

Testbench and Port Mapping
Testbench
In VHDL, a testbench is a module that instantiates the unit under test (UUT) and applies stimulus to
it. The stimulus can be a set of input signals, a clock signal, or a reset signal. The testbench also
monitors the output signals of the UUT and compares them to the expected results. The testbench
can be used to verify the functionality of the UUT and to debug any issues that arise during
simulation. There're some benefits of using a testbench:

It allows you to verify the functionality of your design before you synthesize it.
It allows you to test your design under different conditions and edge cases.
It allows you to debug your design by monitoring the signals in the simulation.
It allows you to automate the testing process by running a set of test cases automatically.

Types of Testbenches
There are several types of testbenches that you can use to test your design:

Simple Testbench
A simple testbench is a basic testbench that applies stimulus to the UUT and monitors the output
signals. It is useful for testing simple designs that do not require complex stimulus or verification.

Process Statement Testbench
A process statement testbench is a testbench that uses a process statement to generate stimulus
for the UUT. It is useful for testing designs that require sequential stimulus or verification.

Look-up Table Testbench
A look-up table testbench is a testbench that uses a look-up table to generate stimulus for the UUT.
It is useful for testing designs that require complex stimulus or verification.

Port Mapping

Port Map is a VHDL construct that allows you to connect the ports of a component to signals in the
testbench. It is used to instantiate the UUT in the testbench and to connect the input and output
signals of the UUT to the stimulus and monitor signals in the testbench. The syntax of the port map
is as follows:

Code above shows an example of a port map for a UUT with two input signals and two output
signals. The input signals are connected to the stimulus signals in the testbench, and the output
signals are connected to the monitor signals in the testbench.

Example
Here is an example of a testbench that instantiates a UUT with two input signals and two output
signals and connects them to the stimulus and monitor signals in the testbench:

UUT_inst : entity work.UUT
 port map (
 input_signal1 => stimulus_signal1,
 input_signal2 => stimulus_signal2,
 output_signal1 => monitor_signal1,
 output_signal2 => monitor_signal2
);

library ieee;
use ieee.std_logic_1164.all;

entity testbench is
end testbench;

architecture tb_arch of testbench is
 signal input_signal1 : std_logic;
 signal input_signal2 : std_logic;
 signal output_signal1 : std_logic;
 signal output_signal2 : std_logic;

 component UUT
 port (
 input_signal1 : in std_logic;
 input_signal2 : in std_logic;
 output_signal1 : out std_logic;
 output_signal2 : out std_logic

In this example, the testbench instantiates a UUT with two input signals and two output signals and
connects them to the stimulus and monitor signals in the testbench. The testbench applies
stimulus to the UUT by setting the input signals to '0' and '1' and monitors the output signals of the
UUT by comparing them to the expected results.

);
 end component;

begin
 UUT_inst : UUT
 port map (
 input_signal1 => input_signal1,
 input_signal2 => input_signal2,
 output_signal1 => output_signal1,
 output_signal2 => output_signal2
);

 -- Apply stimulus to the UUT
 input_signal1 <= '0';
 input_signal2 <= '1';

 -- Monitor the output signals of the UUT
 process
 begin
 wait for 10 ns;
 assert output_signal1 = '0' and output_signal2 = '1'
 report "Test failed"
 severity error;
 wait;
 end process;

end tb_arch;

Testbench in Combinational
Circuit
To use a testbench in a combinational circuit, you need to follow these steps:

1. We must have a VHDL code that to be
tested.

2. Create a testbench for the UUT.

library ieee;
use ieee.std_logic_1164.all;

entity UUT is
 port (
 input_signal1 : in std_logic;
 input_signal2 : in std_logic;
 output_signal1 : out std_logic;
 output_signal2 : out std_logic
);
end UUT;

architecture rtl of UUT is
begin
 output_signal1 <= input_signal1 and input_signal2;
 output_signal2 <= input_signal1 or input_signal2;
end rtl;

library ieee;
use ieee.std_logic_1164.all;

entity testbench is

end testbench;

architecture tb_arch of testbench is
 signal input_signal1 : std_logic;
 signal input_signal2 : std_logic;
 signal output_signal1 : std_logic;
 signal output_signal2 : std_logic;

 component UUT
 port (
 input_signal1 : in std_logic;
 input_signal2 : in std_logic;
 output_signal1 : out std_logic;
 output_signal2 : out std_logic
);
 end component;

begin
 UUT_inst : UUT
 port map (
 input_signal1 => input_signal1,
 input_signal2 => input_signal2,
 output_signal1 => output_signal1,
 output_signal2 => output_signal2
);

 -- Apply stimulus to the UUT
 input_signal1 <= '0';
 input_signal2 <= '1';

 -- Monitor the output signals of the UUT
 process
 begin
 wait for 10 ns;
 assert output_signal1 = '0' and output_signal2 = '1'
 report "Test failed"
 severity error;
 wait;
 end process;

Things to note
The testbench instantiates the UUT and connects the input and output signals.
Entity block in testbench is empty because we are not using any ports.
Entity block from UUT re-typed inside architecture block of testbench, entity keyword
changed to component keyword.
Signal input and output signals are declared in the architecture block of the testbench.
Value changes are applied to the input signals with desired delays.

end tb_arch;

Testbench Architecture
Models, Assert, and Report
Testbench Architecture Models
As mentioned in the previous section, there are threen main testbench architecture models:

Simple Testbench
Works for simple designs with a few inputs and outputs. Values are applied to the inputs, and the
outputs are monitored. Each input value is applied with a delay to allow the UUT to process the
input and generate the output. This resembles the data-flow style in VHDL, where input signals are
directly assigned using <=, and changes are triggered after specific times using the after keyword.

Process Statement Testbench
This resembles the behavioral style in VHDL, where a process statement is used, and each line
within the process is executed sequentially.

begin
 -- Apply values to the input signals with delays
 input_signal1 <= '0', '1' after 10 ns, '0' after 20 ns;
 input_signal2 <= '1', '0' after 10 ns, '0' after 20 ns;
 -- Monitor the output signals
 assert output_signal1 = '1' and output_signal2 = '0'
 report "Test failed"
 severity error;
 wait;
end process;

begin
 -- Stimulus process

Look-up Table Testbench
This extends the process statement approach by storing input combinations in a lookup table
(either signal or constant) and assigning values in a for-loop within the process statement.

 stimulus : process
 begin
 input_signal1 <= '0';
 input_signal2 <= '1';
 wait for 10 ns;
 input_signal1 <= '1';
 input_signal2 <= '0';
 wait for 10 ns;
 input_signal1 <= '0';
 input_signal2 <= '0';
 wait for 10 ns;
 wait;
 end process stimulus;

 -- Monitor the output signals
 process
 begin
 wait for 10 ns;
 assert output_signal1 = '1' and output_signal2 = '0'
 report "Test failed"
 severity error;
 wait;
 end process;

end process;

begin
 -- Lookup table for input signals
 type input_table is array (natural range <>) of std_logic_vector(1 downto 0);
 constant input_values : input_table := (
 "00", "01", "10", "11"
);

Assert and Report
Since testbench are for simulation purposes, it is important to include assertions and reports to
verify the correctness of the design. The assert statement checks if a condition is true and reports
an error if it is false. The report statement is used to display a message when the condition is false.
Assert more likely printf in C language.

 -- Stimulus process
 stimulus : process
 begin
 for i in input_values'range loop
 input_signal1 <= input_values(i)(0);
 input_signal2 <= input_values(i)(1);
 wait for 10 ns;
 end loop;
 wait;
 end process stimulus;

 -- Monitor the output signals
 process
 begin
 wait for 10 ns;
 assert output_signal1 = '1' and output_signal2 = '0'
 report "Test failed"
 severity error;
 wait;
 end process;

end process;

begin
 -- Monitor the output signals
 process
 begin
 wait for 10 ns;
 assert output_signal1 = '1' and output_signal2 = '0'
 report "Test failed"
 severity error;
 wait;

 end process;

Testbench for Sequential
Circuit
Sequential circuit testbenches are similar to those for combinational circuits but include additional
inputs like Clock and Reset. Clock signals require a separate process statement, while the reset
signal can be configured as needed.

library ieee;
use ieee.std_logic_1164.all;

entity up_down_counter is
 port (
 clk : in std_logic;
 rst : in std_logic;
 up_down : in std_logic;
 count : out std_logic_vector(3 downto 0)
);
end up_down_counter;

architecture rtl of up_down_counter is
begin
 process(clk, rst)
 begin
 if rst = '1' then
 count <= "0000";
 elsif rising_edge(clk) then
 if up_down = '1' then
 count <= count + 1;
 else
 count <= count - 1;
 end if;
 end if;
 end process;
end rtl;

In this case, a synchronous up/down counter is tested with a testbench combining all three
architecture models. The Clock uses a process statement, and Reset uses a simple assignment.
Inputs are declared upfront as they do not change during the simulation.

library ieee;
use ieee.std_logic_1164.all;

entity testbench is
end testbench;

architecture tb_arch of testbench is
 signal clk : std_logic := '0';
 signal rst : std_logic := '0';
 signal up_down : std_logic := '0';
 signal count : std_logic_vector(3 downto 0);

 component up_down_counter
 port (
 clk : in std_logic;
 rst : in std_logic;
 up_down : in std_logic;
 count : out std_logic_vector(3 downto 0)
);
 end component;

begin
 UUT_inst : up_down_counter
 port map (
 clk => clk,
 rst => rst,
 up_down => up_down,
 count => count
);

 -- Clock process
 clk_process : process
 begin
 clk <= not clk;
 wait for 10 ns;
 end process;

 -- Apply stimulus to the UUT
 up_down <= '1';
 wait for 10 ns;
 up_down <= '0';
 wait for 10 ns;
 rst <= '1';
 wait for 10 ns;
 rst <= '0';
 wait for 10 ns;
 wait;

end tb_arch;

Read and Write File
In VHDL, you can read and write files using the textio package. The textio package provides
procedures and functions for reading and writing text files. You can use the textio package to read
data from a file into a variable or write data from a variable to a file.

Reading from a File
We can use the TextIO library to handle file operations in VHDL. This feature is useful for reading
input from files during simulation. Here's how to read inputs from a file:

Code above shows an example of reading data from a file in VHDL. The file input.txt is opened in
read mode, and data is read line by line using the readline procedure. The data is then converted
to an integer using the read function and displayed using the report statement.

Writing to a File

library ieee;
use ieee.std_logic_1164.all;
use std.textio.all;

entity read_file is
end read_file;

architecture rtl of read_file is
 file input_file : text open read_mode is "input.txt";
 variable line : line;
 variable data : integer;
begin
 while not endfile(input_file) loop
 readline(input_file, line);
 read(line, data);
 report "Read data: " & integer'image(data);
 end loop;
 file_close(input_file);
 wait;
end rtl;

We can also write testbench results to a file for further analysis. Use the TextIO library's write and
writeline functions to save data to a file:

library ieee;
use ieee.std_logic_1164.all;
use std.textio.all;

entity write_file is
end write_file;

architecture rtl of write_file is
 file output_file : text open write_mode is "output.txt";
 variable data : integer := 42;
begin
 write(output_file, data);
 writeline(output_file, "Data written to file: " & integer'image(data));
 file_close(output_file);
 wait;
end rtl;

For more information on the textio package, refer to the IEEE Standard VHDL
Language Reference Manual.“

