
Module 7:
Procedure, Function,
and Impure Function

Procedure and Function
Procedure, Function, and Impure Function Synthesis

Procedure and Function
Procedure in VHDL
In VHDL, a "procedure" is a language construct used to group multiple statements and specific
tasks into a single block of code. Procedures help organize and understand complex VHDL designs.

Procedure Declaration
A procedure is defined using a procedure declaration. This declaration specifies the name of the
procedure, the required parameters (if any), and the type of data returned (if any). Here is an
example of a procedure declaration in VHDL:

Procedures can accept parameters as arguments. These parameters are used to send data into the
procedure for processing. The required parameters can be defined in the procedure declaration.

The code block in a procedure is where the tasks to be performed by the procedure are placed. You
can write statements in the procedure code block to perform various operations. These statements
can include calculations, tests, data manipulation, etc.

Procedure Call
To use a procedure, you can call it from the main part of the design or another procedure. Calling a
procedure is done by providing arguments that match the parameters defined in the procedure
declaration. Here is an example of using a procedure:

In this example, arg1 and arg2 are the arguments passed to the procedure, and the result of the
procedure is assigned to variable_name . Here's an example of calling a procedure:

procedure procedure_name(param1: in type1; param2: out type2) is
begin
 -- Procedure body
end procedure_name;

variable_name := procedure_name(arg1, arg2);

procedure add_numbers(a: in integer; b: in integer; sum: out integer) is
begin
 sum := a + b;

Function in VHDL
In VHDL (VHSIC Hardware Description Language), "function" and "impure function" are two
concepts used to create subprograms that can be used in hardware descriptions. The following is
an explanation of both:

Function
Procedures in VHDL do not return values directly. Instead, they can modify the values of their
parameters or variables within their scope. If a return value is needed, a function should be used
instead.

Functions in VHDL are subprograms used to perform calculations or data processing that return a
value as a result. You can think of them as mathematical functions in programming. Functions can
have input arguments (parameters) that are used in the calculation. The result of the function will
depend on the values of the input arguments provided. Here is an example of function usage in
VHDL:

The code above just shows the basic structure of a function in VHDL. The actual implementation of
the function will depend on the specific task it is designed to perform. Here's an example of a
function that calculates the sum of two numbers:

Impure Function

end add_numbers;

-- Calling the procedure
variable_name := add_numbers(5, 3);

function function_name(param1: in type1; param2: in type2) return type3 is
begin
 -- Function body
 return result;
end function_name;

function add_numbers(a: in integer; b: in integer) return integer is
begin
 return a + b;
end add_numbers;

-- Using the function
variable_name := add_numbers(5, 3);

An impure function is a function that can have properties that are unpredictable or changeable
when executed. This means that the result of an impure function can depend on external factors
unknown to the program, such as the time at which it is executed, random values, or global
variables that can change.

An impure function is usually used when its result depends on values outside the input arguments
and may change over time. Impure functions cannot be used in hardware descriptions that are
deterministic or synchronous, as is commonly expected in VHDL.

function random_number return integer is
begin
 return integer'image(random(0, 100));
end random_number;

Procedure, Function, and
Impure Function Synthesis
In VHDL, both "functions" and "procedures" can be used in the description of hardware. However, it
should be understood that hardware synthesis is usually more suitable for implementations based
on deterministic and synchronous behavior. Therefore, there are some restrictions on the use of
functions and procedures in the context of synthesis:

Procedures
Procedures in VHDL perform tasks without returning values. They can also be used in hardware
descriptions to organize operations and code. Hardware synthesis usually replaces a procedure call
with a corresponding physical action in the target hardware. Therefore, deterministic procedures
can be synthesized. However, there are some limitations in the use of procedures that depend on
time streams or behaviors that are difficult to predict. Some VHDL compilers may not support the
synthesis of such procedures.

Functions
VHDL functions that do not have impure properties (e.g., produce deterministic values based on
input arguments alone) can usually be synthesized well.

Impure Functions
Impure functions, which produce results that are not predictable or depend on external factors, are
usually not suitable for deterministic hardware synthesis. Impure functions that depend on random
or non-deterministic behavior will not synthesize well because the resulting hardware must be
deterministic and predictable.

So, while functions and procedures can be used in hardware descriptions and can be synthesized if
they meet specific requirements, impure functions are not usually suitable for VHDL synthesis.

Difference Between It All

Criteria Procedure Function Impure Function

Destination Performing tasks without
returning values

Returns the calculated
values

Returning values with
unpredictable properties

Arguments Can have input and output
arguments

Can have input arguments
only

Can have input arguments
only

Return value No return value Returns a value Returns a value

Usage Used for organizing code
and operations

Used for calculations and
data processing

Used for calculations and
data processing with
unpredictable properties

Example Procedure to add two
numbers

Function to add two
numbers

Function to generate
random numbers

Synthesis Can be synthesized if
deterministic

Can be synthesized if
deterministic

Usually not suitable for
synthesis

Example
Procedure

library IEEE;
use IEEE.STD_LOGIC_1164.ALL;

entity Adder is
 port (
 A, B: in std_logic;
 Sum: out std_logic
);
end entity;

architecture RTL of Adder is
 procedure add_numbers(a: in std_logic; b: in std_logic; sum: out std_logic) is
 begin
 sum <= a xor b;
 end add_numbers;
begin
 process (A, B)
 begin
 add_numbers(A, B, Sum);
 end process;
end architecture;

Function

Impure Function

library IEEE;
use IEEE.STD_LOGIC_1164.ALL;

entity Adder is
 port (
 A, B: in std_logic;
 Sum: out std_logic
);
end entity;

architecture RTL of Adder is
 function add_numbers(a: in std_logic; b: in std_logic) return std_logic is
 begin
 return a xor b;
 end add_numbers;
begin
 process (A, B)
 begin
 Sum <= add_numbers(A, B);
 end process;
end architecture;

library IEEE;
use IEEE.STD_LOGIC_1164.ALL;
use IEEE.MATH_REAL.ALL;

entity Adder is
 port (
 Sum: out std_logic
);
end entity;

architecture RTL of Adder is
 function random_number return std_logic is
 begin
 return REAL'(uniform(0.0, 1.0) > 0.5);
 end random_number;

begin
 process
 begin
 Sum <= random_number;
 end process;
end architecture;

