Digital System
Design

e Module 4: Testbench

o Testbench and Port Mapping

o Testbench in Combinational Circuit

o Testbench Architecture Models, Assert, and Report

o Testbench for Sequential Circuit

o Read and Write File

Module 5: Structural Style Programming In VHDL

o Structural Style, Port Mapping, and Generic Map

o VHDL Modularity

o Array and Types in VHDL

Module 6: Looping

o While Loop and For Loop

o Loop Control: Next & Exit Statements

Module 7: Procedure, Function, and Impure Function

o Procedure and Function

o Procedure, Function, and Impure Function Synthesis

Module 8 : Finite State Machine

o Finite State Machine

o Finite State Machine in VHDL

o FSM Implementation Example in VHDL

e Module 9 : Microprogramming

o Microprogramming in VHDL

e Final Project Digital System Design

Module 4: Testbench

Module 4: Testbench

Testbench and Port Mapping

Testbench

In VHDL, a testbench is a module that instantiates the unit under test (UUT) and applies stimulus to
it. The stimulus can be a set of input signals, a clock signal, or a reset signal. The testbench also
monitors the output signals of the UUT and compares them to the expected results. The testbench
can be used to verify the functionality of the UUT and to debug any issues that arise during
simulation. There're some benefits of using a testbench:

e It allows you to verify the functionality of your design before you synthesize it.

e It allows you to test your design under different conditions and edge cases.

e It allows you to debug your design by monitoring the signals in the simulation.

e It allows you to automate the testing process by running a set of test cases automatically.

Types of Testbenches

There are several types of testbenches that you can use to test your design:

Simple Testbench

A simple testbench is a basic testbench that applies stimulus to the UUT and monitors the output
signals. It is useful for testing simple designs that do not require complex stimulus or verification.

Process Statement Testbench

A process statement testbench is a testbench that uses a process statement to generate stimulus
for the UUT. It is useful for testing designs that require sequential stimulus or verification.

Look-up Table Testbench

A look-up table testbench is a testbench that uses a look-up table to generate stimulus for the UUT.
It is useful for testing designs that require complex stimulus or verification.

Port Mapping

Port Map is a VHDL construct that allows you to connect the ports of a component to signals in the
testbench. It is used to instantiate the UUT in the testbench and to connect the input and output
signals of the UUT to the stimulus and monitor signals in the testbench. The syntax of the port map
is as follows:

UUT _inst : entity work.UUT
port map (
input_signall => stimulus_signall,
input_signal2 => stimulus_signal2,
output_signall => monitor_signall,

output_signal2 => monitor_signal2

Code above shows an example of a port map for a UUT with two input signals and two output
signals. The input signals are connected to the stimulus signals in the testbench, and the output
signals are connected to the monitor signals in the testbench.

Example

Here is an example of a testbench that instantiates a UUT with two input signals and two output
signals and connects them to the stimulus and monitor signals in the testbench:

library ieee;

use ieee.std_logic_1164.all;

entity testbench is

end testbench;

architecture tb_arch of testbench is
signal input_signall : std_logic;
signal input_signal2 : std_logic;
signal output_signall : std_logic;

signal output_signal2 : std_logic;

component UUT
port (
input_signall : in std_logic;
input_signal2 : in std_logic;
output_signall : out std_logic;

output_signal2 : out std_logic

)

end component;

begin
UUT inst : UUT
port map (
input_signall => input_signall,
input_signal2 => input_signal2,
output_signall => output_signall,

output_signal2 => output_signal2

-- Apply stimulus to the UUT
input_signall <= '0";

input_signal2 <= '1%

-- Monitor the output signals of the UUT
process
begin
wait for 10 ns;
assert output_signall = '0' and output_signal2 = '1'
report "Test failed"
severity error;
wait;

end process;

end tb_arch;

In this example, the testbench instantiates a UUT with two input signals and two output signals and
connects them to the stimulus and monitor signals in the testbench. The testbench applies
stimulus to the UUT by setting the input signals to '0' and '1' and monitors the output signals of the
UUT by comparing them to the expected results.

Module 4: Testbench

Testbench in Combinational
Circuit

To use a testbench in a combinational circuit, you need to follow these steps:

1. We must have a VHDL code that to be
tested.

library ieee;

use ieee.std_logic_1164.all;

entity UUT is
port (
input_signall : in std_logic;
input_signal2 : in std_logic;
output_signall : out std_logic;
output_signal2 : out std_logic
);
end UUT;

architecture rtl of UUT is

begin
output_signall <= input_signall and input_signal2;
output_signal2 <= input_signall or input_signal2;

end rtl;

2. Create a testbench for the UUT.

library ieee;

use ieee.std_logic_1164.all;

entity testbench is

end testbench;

architecture tb_arch of testbench is
signal input_signall : std_logic;
signal input_signal2 : std_logic;
signal output_signall : std_logic;

signal output_signal2 : std_logic;

component UUT
port (
input_signall : in std_logic;
input_signal2 : in std_logic;
output_signall : out std_logic;
output_signal2 : out std_logic
);

end component;

begin
UUT _inst : UUT
port map (
input_signall => input_signall,
input_signal2 => input_signal2,
output_signall => output_signall,

output_signal2 => output_signal2

-- Apply stimulus to the UUT
input_signall <= '0%

input_signal2 <= '1%

-- Monitor the output signals of the UUT
process
begin
wait for 10 ns;
assert output_signall = '0' and output_signal2 = '1'
report "Test failed"

severity error;

wait;

end process;

end tb_arch;

Things to note

The testbench instantiates the UUT and connects the input and output signals.

Entity block in testbench is empty because we are not using any ports.

Entity block from UUT re-typed inside architecture block of testbench, entity keyword
changed to component keyword.

Signal input and output signals are declared in the architecture block of the testbench.
Value changes are applied to the input signals with desired delays.

Module 4: Testbench

Testbench Architecture
Models, Assert, and Report

Testbench Architecture Models

As mentioned in the previous section, there are threen main testbench architecture models:

Simple Testbench

Works for simple designs with a few inputs and outputs. Values are applied to the inputs, and the
outputs are monitored. Each input value is applied with a delay to allow the UUT to process the
input and generate the output. This resembles the data-flow style in VHDL, where input sighals are
directly assigned using <=, and changes are triggered after specific times using the after keyword.

begin
-- Apply values to the input signals with delays
input_signall <= '0', '1' after 10 ns, '0" after 20 ns;
input_signal2 <= '1', '0" after 10 ns, '0' after 20 ns;
-- Monitor the output signals
assert output_signall = '1"' and output_signal2 = '0'
report "Test failed"
severity error;
wait;

end process;

Process Statement Testbench

This resembles the behavioral style in VHDL, where a process statement is used, and each line
within the process is executed sequentially.

begin

-- Stimulus process

stimulus : process

begin
input_signall <= "'0";
input_signal2 <= "1%;
wait for 10 ns;
input_signall <="1";
input_signal2 <= '0"
wait for 10 ns;
input_signall <= '0"
input_signal2 <= "'0"
wait for 10 ns;
wait;

end process stimulus;

-- Monitor the output signals
process
begin
wait for 10 ns;
assert output_signall = '1" and output_signal2 = '0'
report "Test failed"
severity error;
wait;

end process;

end process;

Look-up Table Testbench

This extends the process statement approach by storing input combinations in a lookup table
(either signal or constant) and assigning values in a for-loop within the process statement.

begin
-- Lookup table for input signals
type input_table is array (natural range <>) of std_logic_vector(1 downto 0);
constant input_values : input_table := (

||00||, ||01||, ||10||, ||11||

-- Stimulus process
stimulus : process
begin
foriin input_values'range loop
input_signall <= input_values(i)(0);
input_signal2 <= input_values(i)(1);
wait for 10 ns;
end loop;
wait;

end process stimulus;

-- Monitor the output signals
process
begin
wait for 10 ns;
assert output_signall = '1" and output_signal2 = '0'
report "Test failed"
severity error;
wait;

end process;

end process;

Assert and Report

Since testbench are for simulation purposes, it is important to include assertions and reports to
verify the correctness of the design. The assert statement checks if a condition is true and reports
an error if it is false. The report statement is used to display a message when the condition is false.
Assert more likely printf in C language.

begin
-- Monitor the output signals
process
begin
wait for 10 ns;
assert output_signall = '1" and output_signal2 = '0'

report "Test failed"

severity error;
wait;

end process;

Module 4: Testbench

Testbench for Sequential
Circuit

Sequential circuit testbenches are similar to those for combinational circuits but include additional
inputs like Clock and Reset. Clock signals require a separate process statement, while the reset
signal can be configured as needed.

library ieee;

use ieee.std_logic_1164.all;

entity up_down_counter is
port (
clk : in std_logic;
rst : in std_logic;
up_down : in std_logic;
count : out std_logic_vector(3 downto 0)
);

end up_down_counter;

architecture rtl of up_down_counter is
begin
process(clk, rst)
begin
if rst ='1"' then
count <= "0000";
elsif rising_edge(clk) then
if up_down = '1"' then
count <= count + 1;
else
count <= count - 1;
end if;
end if;
end process;

end rtl;

In this case, a synchronous up/down counter is tested with a testbench combining all three
architecture models. The Clock uses a process statement, and Reset uses a simple assignment.
Inputs are declared upfront as they do not change during the simulation.

library ieee;

use ieee.std_logic_1164.all;

entity testbench is

end testbench;

architecture tb_arch of testbench is
signal clk : std_logic :='0";
signal rst : std_logic :='0";
signal up_down : std_logic :="'0";

signal count : std_logic_vector(3 downto 0);

component up_down_counter
port (
clk : in std_logic;
rst : in std_logic;
up_down : in std_logic;
count : out std_logic_vector(3 downto 0)
);

end component;

begin
UUT _inst : up_down_counter
port map (
clk => clk,
rst => rst,
up_down => up_down,

count => count

-- Clock process
clk_process : process
begin
clk <= not clk;
wait for 10 ns;

end process;

-- Apply stimulus to the UUT
up_down <="1"

wait for 10 ns;

up_down <= "'0"

wait for 10 ns;

rst <="'1"%

wait for 10 ns;

rst <="'0";

wait for 10 ns;

wait;

end tb_arch;

Module 4: Testbench

Read and Write File

In VHDL, you can read and write files using the textio package. The textio package provides
procedures and functions for reading and writing text files. You can use the textio package to read
data from a file into a variable or write data from a variable to a file.

Reading from a File

We can use the TextlO library to handle file operations in VHDL. This feature is useful for reading
input from files during simulation. Here's how to read inputs from a file:

library ieee;
use ieee.std_logic_1164.all;

use std.textio.all;

entity read_file is

end read_file;

architecture rtl of read_file is
file input_file : text open read_mode is "input.txt";
variable line : line;
variable data : integer;
begin
while not endfile(input_file) loop
readline(input file, line);
read(line, data);
report "Read data: " & integer'image(data);
end loop;
file_close(input_file);
wait;

end rtl;

Code above shows an example of reading data from a file in VHDL. The file input.txt is opened in
read mode, and data is read line by line using the readline procedure. The data is then converted
to an integer using the read function and displayed using the report statement.

Writing to a File

We can also write testbench results to a file for further analysis. Use the TextlO library's write and
writeline functions to save data to a file:

library ieee;
use ieee.std_logic_1164.all;

use std.textio.all;

entity write_file is

end write_file;

architecture rtl of write_file is
file output_file : text open write_mode is "output.txt";
variable data : integer := 42;
begin
write(output file, data);
writeline(output_file, "Data written to file: " & integer'image(data));
file_close(output file);
wait;

end rtl;

44 For more information on the textio package, refer to the IEEE Standard VHDL
Language Reference Manual.

Module 5: Structural Style
Programming In VHDL

Module 5: Structural Style Programming In VHDL

Structural Style, Port
Mapping, and Generic Map

Structural Style Programming

Structural Style Programming in VHDL allows designers to build digital circuits using basic
components connected to form a more complex system. In this approach, circuits are represented
as collections of entities connected in a specific way to achieve the desired function.

Port Mapping

Port mapping is the process of associating the ports of a VHDL component (entity) with signals in
the architecture. This allows entities to be connected with the actual circuit in the design.

Important Points

Entity Definition: An entity must be defined first, which includes its ports and data
types.

Port-Map List: Ports of the entity are mapped to corresponding signals in the
architecture.

Port Mapping Order: Mapping must follow the order defined in the entity.

Signal Declaration: Signals used in port mapping must be declared in the architecture.

Example

entity AND2 is
port (
A, B: in std_logic;
Y: out std_logic
);
end entity;

-- Port mapping
architecture RTL of AND2 is

begin
Y <= A and B;

end architecture;

-- Using the entity with port mapping
D1: AND2 port map (

A => input_signal_A,

B => input_signal_B,

Y => output_signal

Generic Map

Generic map is the process of mapping generic values in an entity to corresponding values in the
architecture. Generics are parameters that can be set for an entity to configure the behavior or
characteristics of a component.

Important Points

e Generic: Parameters used to modify characteristics of an entity.

e Generic Map: Defines the values for generics when instantiating an entity.

o Default Value: Generics often have default values, but they can be overwritten during
instantiation.

Example

entity Counter is
generic (
WIDTH: positive := 8; -- Default value for WIDTH is 8
ENABLED: boolean := true -- Default value for ENABLED is true
);
port (
clk: in std_logic;
reset: in std_logic;
count: out std_logic_vector(WIDTH-1 downto 0)
);
end entity;

-- Generic map when instantiating the entity

architecture RTL of MyDesign is

signal my_counter_output: std_logic_vector(7 downto 0);
begin
my_counter_inst: Counter
generic map (
WIDTH => 8, -- Generic value WIDTH is reset to 8
ENABLED => true -- Generic value ENABLED is reset to true
)
port map (
clk => system_clock,
reset => reset_signal,
count => my_counter_output
);

end architecture;

Module 5: Structural Style Programming In VHDL

VHDL Modularity

We will build a 4-bit Ripple Carry Adder using 4 Full Adders in Structural Style Programming. Each
Full Adder's carry-out serves as the carry-in for the next Full Adder, creating a ripple effect in
addition.

Step 1 - Full Adder Entity

Inside full adder entity, we will declare the input and output ports. The input ports are A, B, and
Cin, and the output ports are Sum and Cout.

entity full_adder is
port(
A, B, Cin : in std_logic;
Sum, Cout : out std_logic
);
end entity full_adder;

architecture structural of full_adder is
begin
Sum <= A xor B xor Cin;
Cout <= (A and B) or (B and Cin) or (A and Cin);

end architecture structural;

Step 2 - Ripple Carry Adder Architecture

Next step is to create the architecture for the 4-bit Ripple Carry Adder. We will instantiate 4 Full
Adders and connect them in a way that the carry-out of one Full Adder is connected to the carry-in
of the next Full Adder.

entity ripple_carry_adder is
port(
A, B :in std_logic_vector(3 downto 0);
Sum : out std_logic_vector(3 downto 0);

Cout : out std_logic

)

end entity ripple_carry_adder;

architecture structural of ripple_carry_adder is
component full_adder
port(
A, B, Cin : in std_logic;
Sum, Cout : out std_logic
);

end component full_adder;

signal C : std_logic_vector(3 downto 0);

begin
FAO : full_adder port map(A(0), B(0), '0', Sum(0), C(0));
FA1 : full_adder port map(A(1), B(1), C(0), Sum(1), C(1));
FA2 : full_adder port map(A(2), B(2), C(1), Sum(2), C(2));
FA3 : full_adder port map(A(3), B(3), C(2), Sum(3), Cout);

end architecture structural;

Based on the above code, we can see that the carry-out of each Full Adder is connected to the
carry-in of the next Full Adder. This creates a ripple effect in addition. Therefore the port map
explanation is as follows:

FAO - Full Adder O

A(0) and B(0) are the input bits for the first Full Adder.
'0' is the carry-in for the first Full Adder.

Sum(0) is the output sum of the first Full Adder.

C(0) is the carry-out of the first Full Adder.

FAL - Full Adder 1

e A(1) and B(1) are the input bits for the second Full Adder.
e C(0) is the carry-in for the second Full Adder.

e Sum(1) is the output sum of the second Full Adder.

e C(1) is the carry-out of the second Full Adder.

FA2 - Full Adder 2

e A(2) and B(2) are the input bits for the third Full Adder.
e C(1) is the carry-in for the third Full Adder.

e Sum(2) is the output sum of the third Full Adder.

e C(2) is the carry-out of the third Full Adder.

FA3 - Full Adder 3

A(3) and B(3) are the input bits for the fourth Full Adder.
C(2) is the carry-in for the fourth Full Adder.

Sum(3) is the output sum of the fourth Full Adder.

Cout is the carry-out of the fourth Full Adder.

With this architecture, we have successfully implemented a 4-bit Ripple Carry Adder using 4 Full
Adders in Structural Style Programming.

Step 3 - Testbench

To test the functionality of the 4-bit Ripple Carry Adder, we will create a testbench that provides
input values to the adder and checks the output values.

entity tb_ripple_carry_adder is
end entity tb_ripple_carry_adder;

architecture testbench of tb_ripple_carry_adder is
signal A, B : std_logic_vector(3 downto 0);
signal Sum : std_logic_vector(3 downto 0);
signal Cout : std_logic;

signal clk : std_logic :='0";

component ripple_carry_adder
port(
A, B :in std_logic_vector(3 downto 0);
Sum : out std_logic_vector(3 downto 0);
Cout : out std_logic
);

end component ripple_carry_adder;

begin
dut : ripple_carry_adder port map(A, B, Sum, Cout);

process

begin
A <= "0000"; B <= "0000"; wait for 10 ns;
A <="0001"; B <= "0001"; wait for 10 ns;
A <="0010"; B <= "0010"; wait for 10 ns;
A <="0011"; B <= "0011"; wait for 10 ns;

A <="0100"; B <= "0100"; wait for 10 ns;
A <="0101"; B <= "0101"; wait for 10 ns;
A <="0110"; B <="0110"; wait for 10 ns;
A <="0111"; B <="0111"; wait for 10 ns;
A <="1000"; B <= "1000"; wait for 10 ns;
A <="1001"; B <= "1001"; wait for 10 ns;
A <="1010"; B <= "1010"; wait for 10 ns;
A <="1011"; B <= "1011"; wait for 10 ns;
A <="1100"; B <= "1100"; wait for 10 ns;
A <="1101"; B <= "1101"; wait for 10 ns;
A <="1110"; B <= "1110"; wait for 10 ns;
A <="1111" B <= "1111"; wait for 10 ns;
wait;

end process;

end architecture testbench;

In the testbench, we provide different input values to the 4-bit Ripple Carry Adder and observe the
output values. The testbench will simulate the addition process and verify the correctness of the
adder. The output values can be checked against the expected results to ensure the adder is
functioning correctly

Module 5: Structural Style Programming In VHDL

Array and Types in VHDL

Array

In VHDL, an array is a collection of elements that have the same data type. You can think of an
array as a variable that has many elements with the same data type, and these elements are
indexed for access. The index can be a number or another indexable type, such as integer, natural,
or std_logic_vector. Arrays can have one dimension (one-dimensional array) or more (two-
dimensional array, three-dimensional array, and so on). Two-dimensional arrays are often used to
represent tables or matrices.

Types

In VHDL, a type is a definition used to declare a new data type. Types can be used to define
complex data types, such as arrays or records, or as types used to declare variables, ports, or
signals. Types can also be used to describe the properties and structure of data. VHDL has
predefined data types, such as std_logic, std_logic_vector, integer, and others, but we can also
create our own custom data types. Types that are predefined or embedded in the VHDL library are
called "built-in types," while types that we define ourselves are called "derived types."

Example

-- Custom type definition

type color is (red, green, blue, yellow, black, white);

-- Variable declaration using custom type

signal primary_color: color;

-- Array declaration using custom type

type color_array is array (natural range <>) of color;

-- Array instantiation

signal color_table: color_array(0 to 3);

In the example above, we define a custom type color with specific values. We then declare a signal
primary_color using this custom type. We also define an array type color_array that can hold
elements of type color, and we instantiate an array color_table with a range of 0 to 3 using this

array type.

Module 6: Looping

Module 6: Looping

While Loop and For Loop

What is looping in VHDL?

A looping construct (looping statement) in VHDL is an instruction that allows a program to repeat
the same block of code iteratively. In VHDL, there are two types of looping constructs: the while-
loop and the for-loop.

While Loop

label _name: while (condition) loop
-- Statements

end loop label_name;

For Loop

for index in range loop
-- Statements

end loop;

The following are things that must be considered when using the looping construct:

e While-loop and for-loop can only be used inside a process statement.

e Unlike for-loop, for-generate can be used outside the process statement.

e Like process statements and structural assignments, looping constructs can be labeled.
However, labeling is optional and only serves to help understand the code, especially in
the nested-loop section.

While Loop

While loops operate by repeatedly checking the result of a condition. As long as this condition
returns "true," the code within it will continue to execute. The looping process will end when the
condition returns a "false" value. While loops are very useful when we don't have exact information
about how many times the code needs to be repeated.

However, it's important to remember that there must be a method in the program to change the
result of the condition from "true" to "false" so that the loop can stop. Without such a method, the

program will be stuck in an infinite loop.

Here is an example of VHDL code for a Shift Register that can be modified by implementing
looping.

library IEEE;
use IEEE.STD _LOGIC_1164.ALL;
use IEEE.NUMERIC_STD.ALL;

entity Shift_Register is
port (
clk, reset: in std_logic;
data_in: in std_logic;
data_out: out std_logic
);
end entity;

architecture RTL of Shift_Register is
signal reg: std_logic_vector(7 downto 0) := (others =>'0');
begin
process (clk, reset)
begin
if reset = '1' then
reg <= (others =>"'0");
elsif rising_edge(clk) then
reg(7) <= reg(6);
reg(6) <= reg(5);
reg(5) <= reg(4);
reg(4) <= reg(3);
reg(3) <= reg(2);
reg(2) <= reg(1);
reg(l) <= reg(0);
reg(0) <= data_in;
end if;

end process;

data_out <= reg(7);

end architecture;

The code above still uses the regular assignment method. To implement while loop, the process in
the code above can be replaced with the following code.

process (clk, reset)
variable i: integer := 0;
begin
if reset = '1' then
reg <= (others =>'0");
elsif rising_edge(clk) then
while i < 8 loop
reg(i) <=reg(i+1);
=i+ 1;
end loop;
end if;

end process;

For Loop

A for loop repeats the code within a certain range using an index variable. The code inside is
executed once on each iteration. This type of looping is suitable when the number of iterations

required is known in advance.

The following are things to keep in mind when using for-loops: The range to be iterated over can be
defined directly or taken from another previously declared variable in the form of a vector, array,

or list.

e Index variables do not need to be declared beforehand; they will be created

automatically.

e Index variables can be used in calculations inside the loop but cannot be manually

changed.

e Index variables can only increase or decrease by 1 at each iteration.
e Index variables can be incremented or decremented by changing the range from “i0 to in”

to “in downto i0”.

process (clk, reset)
begin
if reset = '1' then
reg <= (others =>"'0');
elsif rising_edge(clk) then
foriin 7 downto 1 loop
reg(i) <= reg(i-1);
end loop;
reg(0) <= data_in;

end if;

end process;

Module 6: Looping

Loop Control: Next & Exit
Statements

The following are two additional statements that can be used to control the looping construct:

Next

The next statement is used to skip the remaining code in the current iteration of the loop and
proceed to the next iteration. In a for-loop, the index variable will be incremented or decremented
automatically before the next iteration. In a while loop, this behavior depends on the logic applied.
There are two ways to use the next statement.

next when (condition);
if (condition) then
next;

end if;

Exit

The exit statement is used to stop the loop forcibly. When this statement is executed, the loop will
terminate immediately, and the program will continue executing the code that follows the loop.
There are two ways to use the exit statement.

exit when (condition);
if (condition) then
exit;

end if;

Example

Below is an example of a for-loop that uses the next and exit statements.

process
variable i: integer := 0;
begin
foriin O to 7 loop
if i = 3 then
next; -- Skip the rest of the code in this iteration
elsif i = 5 then
exit; -- Exit the loop
end if;
reg(i) <= reg(i+1);
end loop;

end process;

This VHDL code snippet demonstrates the use of a for-loop within a process statement. Here's the
detailed explanation:

1. Process Declaration:
e The process block is declared, and a variable i of type integer is initialized to 0.
2. For-Loop:
e The for-loop iterates over the range from 0 to 7, inclusive. The loop variable i is
automatically created and incremented with each iteration.
3. Conditional Statements:
e Inside the loop, there are two conditional checks:

o ifi=3then:If i equals 3, the next statement is executed. This causes the loop
to skip the remaining code in the current iteration and proceed to the next
iteration.

o elsifi=5then: If i equals 5, the exit statement is executed. This causes the
loop to terminate immediately, and the process continues with the code
following the loop.

4. Register Assignment:
¢ If neither of the above conditions is met, the code reg(i) <= reg(i+1); is executed. This
assigns the value of reg(i+1) to reg(i) .
5. End Loop and Process:
e The loop ends after completing the iterations from 0 to 7 unless exited early by the
exit statement.
e The process block ends after the loop.

Summary

The loop iterates from 0 to 7.

e When i is 3, the loop skips the current iteration.

When i is 5, the loop exits.

For other values of i, reg(i) is assigned the value of reg(i+1) .

Module 7: Procedure,
Function, and Impure
Function

Module 7: Procedure, Function, and Impure Function

Procedure and Function

Procedure in VHDL

In VHDL, a "procedure" is a language construct used to group multiple statements and specific
tasks into a single block of code. Procedures help organize and understand complex VHDL designs.

Procedure Declaration

A procedure is defined using a procedure declaration. This declaration specifies the name of the
procedure, the required parameters (if any), and the type of data returned (if any). Here is an
example of a procedure declaration in VHDL:

procedure procedure_name(paraml: in typel; param?2: out type2) is
begin
-- Procedure body

end procedure_name;

Procedures can accept parameters as arguments. These parameters are used to send data into the
procedure for processing. The required parameters can be defined in the procedure declaration.

The code block in a procedure is where the tasks to be performed by the procedure are placed. You
can write statements in the procedure code block to perform various operations. These statements
can include calculations, tests, data manipulation, etc.

Procedure Call

To use a procedure, you can call it from the main part of the design or another procedure. Calling a
procedure is done by providing arguments that match the parameters defined in the procedure
declaration. Here is an example of using a procedure:

variable_name := procedure_name(argl, arg2);

In this example, argl and arg2 are the arguments passed to the procedure, and the result of the
procedure is assigned to variable_name . Here's an example of calling a procedure:

procedure add_numbers(a: in integer; b: in integer; sum: out integer) is

begin

sum:=a+ b;

end add_numbers;

-- Calling the procedure

variable_name := add_numbers(5, 3);

Function in VHDL

In VHDL (VHSIC Hardware Description Language), "function" and "impure function" are two
concepts used to create subprograms that can be used in hardware descriptions. The following is
an explanation of both:

Function

Procedures in VHDL do not return values directly. Instead, they can modify the values of their
parameters or variables within their scope. If a return value is needed, a function should be used

instead.

Functions in VHDL are subprograms used to perform calculations or data processing that return a
value as a result. You can think of them as mathematical functions in programming. Functions can
have input arguments (parameters) that are used in the calculation. The result of the function will
depend on the values of the input arguments provided. Here is an example of function usage in
VHDL:

function function_name(param1l: in typel; param2: in type2) return type3 is
begin

-- Function body

return result;

end function_name;

The code above just shows the basic structure of a function in VHDL. The actual implementation of
the function will depend on the specific task it is designed to perform. Here's an example of a
function that calculates the sum of two numbers:

function add_numbers(a: in integer; b: in integer) return integer is
begin
return a + b;

end add_numbers;

-- Using the function

variable_name := add_numbers(5, 3);

Impure Function

An impure function is a function that can have properties that are unpredictable or changeable
when executed. This means that the result of an impure function can depend on external factors
unknown to the program, such as the time at which it is executed, random values, or global
variables that can change.

An impure function is usually used when its result depends on values outside the input arguments
and may change over time. Impure functions cannot be used in hardware descriptions that are
deterministic or synchronous, as is commonly expected in VHDL.

function random_number return integer is
begin
return integer'image(random(0, 100));

end random_number;

Module 7: Procedure, Function, and Impure Function

Procedure, Function, and
Impure Function Synthesis

In VHDL, both "functions" and "procedures" can be used in the description of hardware. However, it
should be understood that hardware synthesis is usually more suitable for implementations based
on deterministic and synchronous behavior. Therefore, there are some restrictions on the use of
functions and procedures in the context of synthesis:

Procedures

Procedures in VHDL perform tasks without returning values. They can also be used in hardware
descriptions to organize operations and code. Hardware synthesis usually replaces a procedure call
with a corresponding physical action in the target hardware. Therefore, deterministic procedures
can be synthesized. However, there are some limitations in the use of procedures that depend on
time streams or behaviors that are difficult to predict. Some VHDL compilers may not support the
synthesis of such procedures.

Functions

VHDL functions that do not have impure properties (e.g., produce deterministic values based on
input arguments alone) can usually be synthesized well.

Impure Functions

Impure functions, which produce results that are not predictable or depend on external factors, are
usually not suitable for deterministic hardware synthesis. Impure functions that depend on random
or non-deterministic behavior will not synthesize well because the resulting hardware must be
deterministic and predictable.

So, while functions and procedures can be used in hardware descriptions and can be synthesized if
they meet specific requirements, impure functions are not usually suitable for VHDL synthesis.

Difference Between It All

Criteria

Destination
Arguments
Return value
Usage
Example

Synthesis

Example

Procedure

library IEEE;

Procedure

Performing tasks without
returning values

Can have input and output
arguments

No return value

Used for organizing code
and operations

Procedure to add two
numbers

Can be synthesized if
deterministic

use |IEEE.STD_LOGIC_1164.ALL;

entity Adder is
port (

A, B: in std_logic;

Sum: out std_logic

);
end entity;

architecture RTL of Adder is

Function

Returns the calculated
values

Can have input arguments
only

Returns a value

Used for calculations and
data processing

Function to add two
numbers

Can be synthesized if
deterministic

procedure add_numbers(a: in std_logic; b: in std_logic; sum: out std_logic) is

begin
sum <= a xor b;
end add_numbers;
begin
process (A, B)
begin

add_numbers(A, B, Sum);

end process;

end architecture;

Impure Function

Returning values with
unpredictable properties

Can have input arguments
only

Returns a value

Used for calculations and
data processing with
unpredictable properties

Function to generate
random numbers

Usually not suitable for
synthesis

Function

library IEEE;
use IEEE.STD_LOGIC_1164.ALL;

entity Adder is
port (
A, B: in std_logic;
Sum: out std_logic
);
end entity;

architecture RTL of Adder is
function add_numbers(a: in std_logic; b: in std_logic) return std_logic is
begin
return a xor b;
end add_numbers;
begin
process (A, B)
begin
Sum <= add_numbers(A, B);
end process;

end architecture;

Impure Function

library IEEE;
use IEEE.STD_LOGIC_1164.ALL;
use IEEE.MATH_REAL.ALL;

entity Adder is
port (
Sum: out std_logic
);
end entity;

architecture RTL of Adder is
function random_number return std_logic is
begin
return REAL'(uniform(0.0, 1.0) > 0.5);

end random_number;
begin
process
begin
Sum <= random_number;
end process;

end architecture;

Module 8 : Finite State
Machine

Module 8 : Finite State Machine

Finite State Machine

A Finite State Machine (FSM), or Finite Automata, is a mathematical model of a system whose state
is capable of changing. These systems have characteristics or behaviors that vary depending on
the current state. In general, FSMs are divided into two types: FSMs with output and FSMs without
output.

However, in this module, only FSMs with output will be discussed. FSMs with output can be divided
into 2 types, namely Mealy Machine and Moore Machine.

Mealy Machine

Mealy State Machine is an FSM in which the next state is determined by the current input and the
present state. Different inputs, along with different present states, will result in different next
states. For example, in digital circuits, Registers exhibit this characteristic. In everyday life, the
change in state of a substance can be modeled as a Mealy State Machine.

Meady StatedMaghineknown MeadyStatedMaghineGinguit

Moore Machine

Moore State Machine is a type of FSM where the next state is only determined by the current state,
without being affected by inputs. This means that any input will not change the next state. The
hallmark of a Moore State Machine is its one-way cycle structure. For example, digital circuits such
as counters exhibit this property. In everyday life, the metamorphosis cycle in animals can be
modeled as a Moore State Machine.

MegradsStatel Maghinewnown Megredstatie Maghinectdrcuit

Module 8 : Finite State Machine

Finite State Machine in VHDL

Basically, FSM serves to describe the workings of a sequential circuit. Therefore, the VHDL code of
an FSM is not much different from the VHDL code of an ordinary sequential circuit, which uses a
process statement (behavioral model). There are many methods that can be used to create an FSM
using VHDL. However, we will only learn the most basic method. The method requires a minimum
of two processes, commonly called Synchronous Process and Combinatorial Process.

e Synchronous Process in the context of a Finite State Machine (FSM) is responsible for
arranging state transitions based on the current state and received inputs. This process is
similar to how a D flip-flop works, controlling state transitions by utilizing clock signals and
memory to store the current state. Its main functions include controlling state transitions,
input management, and integration with the clock and memory, ensuring that state
transitions take place in a synchronized and orderly manner.

e The Combinatorial Process is responsible for generating outputs based on the current
state and the inputs received. This process is similar to how logic gates work, generating
outputs based on the inputs received. Its main functions include output management,
integration with inputs, and decision-making based on the current state, ensuring that
outputs are generated in a synchronized and orderly manner.

E‘rﬁﬁ@éﬁﬁ&t&tﬁd\ﬂia%m@\known

Module 8 : Finite State Machine

FSM Implementation
Example in VHDL

Moore Machine

This FSM has two states: STO and ST1. In the STO state, the FSM outputs '0', and in ST1, the output
is '1'. This FSM also accepts two inputs: CLR and TOG_EN. The CLR input returns the FSM to STO,
while TOG_EN determines whether the FSM can switch states.

MagredVlachinetype unknown

library IEEE;
use IEEE.STD_LOGIC 1164.ALL;

entity FSM_Moore is
Port (CLK : in STD_LOGIC;
CLR : in STD_LOGIC;
TOG_EN : in STD_LOGIC;
Z1 : out STD_LOGIC);
end FSM_Moore;

architecture Behavioral of FSM_Moore is
type state_type is (STO, ST1);
signal state, next_state : state type;
begin
process (CLK, CLR)
begin
if CLR = '1' then
state <= STO;
elsif rising_edge(CLK) then
state <= next_state;
end if;

end process;

process (state, TOG_EN)
begin
case state is
when STO =>
if TOG_EN = '1' then
next_state <= ST1;
else
next_state <= STO;
end if;
when ST1 =>
if TOG_EN = '1' then
next_state <= STO;
else
next_state <= ST1;
end if;
end case;

end process;

process (state)
begin
case state is
when STO =>
Z1l <="'0";
when ST1 =>
Z1l <="1";
end case;
end process;

end Behavioral;

Penjelasan Kode

e In the code above, we define the FSM_Moore entity with three inputs (CLK, CLR, TOG_EN)
and one output (Z1).

e In the Behavioral architecture, we define a state_type data type that contains two states:
STO and ST1. In addition, we define two signals state and next_state of type state_type.

e In the first process, we use the state and next_state signals to set the state transition
based on the input received. If the input CLR = '1', the FSM will return to the STO state. If
the CLK input changes from '0' to '1', the FSM will move to the next_state.

e In the second process, we use the state and TOG_EN signals to set the output based on
the current state and the input received. If the FSM is in state STO and input TOG_EN = '1',
then the FSM will move to state ST1. If the FSM is in the ST1 state and the TOG_EN input

='1"', then the FSM will move to the STO state.

e In the third process, we use state signals to set the output based on the current state. If
the FSM is in the STO state, then the output is '0'. If the FSM is in the ST1 state, then the
output is '1".

Mealy Machine

This FSM has three states: “00”, ‘01’, and ‘11’. In addition, this FSM accepts two inputs: SET and X.
The SET input returns the FSM to state “11”, while X determines the next output and state

Me@éy\&/l&ohdine type unknown

library IEEE;
use IEEE.STD_LOGIC_1164.ALL;

entity FSM_Mealy is
Port (CLK : in STD_LOGIC;
SET : in STD_LOGIC;
X :in STD_LOGIC;
Y : out STD_LOGIC_VECTOR (1 downto 0);
Z2 : out STD_LOGIC);
end FSM_Mealy;

architecture Behavioral of FSM_Mealy is
type state_type is (ST0O, STO1, ST11);
signal state, next_state : state_type;
begin
process (CLK, SET)
begin
if SET = '1' then
state <= ST11;
elsif rising_edge(CLK) then
state <= next_state;
end if;

end process;

process (state, X)
begin
case state is

when STO0 =>

if X ="0"then
next_state <= ST0O;
else
next_state <= STO1;
end if;
when ST01 =>
if X ="0"then
next_state <= ST00;
else
next_state <= ST11;
end if;
when ST11 =>
next state <= ST11;
end case;

end process;

process (state, X)
begin
case state is
when ST00 =>
Y <="00";
Z2 <="'0"
when ST01 =>
Y <="01";
Z2 <="1"
when ST11 =>
Y <="11";
Z2 <= X;
end case;
end process;

end Behavioral;

Penjelasan Kode

e In the code above, we define the FSM_Mealy entity with four inputs (CLK, SET, X) and two
outputs (Y, Z2).

e In the Behavioral architecture, we define a state_type data type that contains three
states: ST0O, STO1, and ST11. In addition, we define two signals state and next_state of
type state_type.

e In the first process, we use the state and next_state signals to set the state transition
based on the input received. If the SET input = '1', the FSM will return to the ST11 state. If

the CLK input changes from '0' to '1', the FSM will move to the next_state.

In the second process, we use the state and X signals to set the output and state
transition based on the current state and the received input. If the FSM is in state ST0O0
and input X = '0', then the FSM will remain in state STOO. If the FSM is in state STO0 and
input X = '1', then the FSM will move to state STOL. If the FSM is in state STO1 and input X
= '0', the FSM will move to state STOO. If the FSM is in state STO1 and input X = '1', the
FSM will move to state ST11. If the FSM is in state ST11, the FSM will remain in state ST11.
In the third process, we use the state and X signals to set the output based on the current
state and the received input. If the FSM is in state STOO, then output Y is “00” and output
Z2 is '0'. If the FSM is in the STO1 state, then the Y output is “01” and the Z2 output is '1".
If the FSM is in the ST11 state, then the Y output is “11” and the Z2 output is X.

Module 9 :
Microprogramming

Module 9 : Microprogramming

Microprogramming in VHDL

Microprogramming in VHDL

Microprogramming is a technique in computer design that involves using microinstruction sets or
small steps executed by a microprocessor's control unit. VHDL often implements this using state or
finite state machines (FSMs).

Instruction Set

An instruction set is a collection of instructions that a computer's microprocessor or CPU (Central
Processing Unit) understands. Each CPU has its own instruction set consisting of a series of basic
operations that the CPU can perform. These instructions include basic operations such as addition,
subtraction, multiplication, data transfer, and logical operations. With VHDL, we can simulate the
running of a processor when executing its instructions.

The instruction set of a computer architecture is one of the critical elements in the design of a CPU.
It determines the types of operations the CPU can perform, the format of the instructions, and how
the instructions are executed. Instruction sets can be divided into several categories, namely:

Arithmetic and Logic

e Addition, subtraction, multiplication, division
e Logical operations (AND, OR, NOT, XOR)

Data Transfer

e Data transfer between registers and memory
e Data transfer between internal registers

Flow Control Program

e Branching instructions (conditional and unconditional)
e Looping instructions

Input/Output

e Special instructions related to specific architectures or application needs

Code below is an example of an instruction set for a simple CPU to perform arithmetic and logic
operations.

library IEEE;

use IEEE.STD _LOGIC_1164.ALL;

use IEEE.STD_LOGIC_ARITH.ALL;

use IEEE.STD_LOGIC_UNSIGNED.ALL;

entity Microprogram_ADD is

OPort (clk : in STD_LOGIC;

reset : in STD_LOGIC;

start : in STD_LOGIC;

operandl : out STD_LOGIC_VECTOR(7 downto 0);
operand2 : in STD_LOGIC_VECTOR(7 downto 0);
[operand3:in STD_LOGIC_VECTOR(7 downto 0)
)

end Microprogram_ADD;

N
0
N
N

architecture Behavioral of Microprogram_ADD is
[type State_Type is (FETCH, DECODE, EXECUTE, COMPLETE);
[signal state : State Type := FETCH;

[signal counter : integer := 0;

[signal data_reg : STD_LOGIC_VECTOR(7 downto 0);
[signal add_result : STD_LOGIC_VECTOR(7 downto 0);
begin

Oprocess(clk, reset)

[begin

[TIif reset = '1' then

[ITlstate <= FETCH,;

[ITcounter <= 0;

[ITdata_reg <= (others =>"'0');

(ITladd_result <= (others =>"'0");

[Telsif rising_edge(clk) then

[ITkcase state is

IITwhen FETCH =>

(ITITIif start = '1' then

(IIIITstate <= DECODE;

(II1Tkend if;

[(IITwhen DECODE => --Microinstruction for decoding phase
(I1Tdata_reg <= "00000001"; --Assume control signal for ADD
[IIITkcounter <= counter + 1;

[TI1TIif counter = 2 then

(IIIITstate <= EXECUTE;

(I1Tlend if;

[IITwhen EXECUTE => --Microinstruction for execution phase
[I1Tdata_reg <= "00000010"; --Assume control signal for addition operation
[IITTledd_result <= operand2 + operand3;

[IIITlcounter <= counter + 1;

[II1TIif counter = 3 then

MIIITstate <= COMPLETE;

(I1Tlend if;

IITwhen COMPLETE => --Microinstruction for completion phase
[I1Tdata_reg <= "00000000"; --Reset control signals
[IIITlstate <= FETCH; --Reset to initial state

[IIend case;

Ilend if;

(end process;

[operandl <= add_result;

end Behavioral;

Based on the code above, the instruction set consists of four states: FETCH, DECODE, EXECUTE,
and COMPLETE. The instruction set is designed to perform an addition operation. The operand2 and
operand3 are input operands, while operandl is the output operand. The start signal is used to
initiate the operation. The data reg signal is used to store the control signals for the
microinstructions. The add_result signal stores the result of the addition operation.

MW@Mleﬂmnknown

State_Type is a user-defined type that defines the states of the CPU. The state signal is used to
keep track of the current state of the CPU. The counter signal is used to count the number of clock
cycles. The data_reg signal stores the control signals for the microinstructions. The add_result signal
stores the result of the addition operation.

In this module, we will learn how to design a control unit using microprogramming in VHDL. We will
also learn how to implement the control unit using a finite state machine (FSM) and

microinstructions. To find out more about how to make a 16 bit CPU, see here

Central Processing Unit (CPU)

https://github.com/acarcher/risc/tree/master

CPU has four main components:

1. The Control Unit (together with IR) interprets machine language instructions and issues
control signals to make the CPU execute those instructions.

2. ALU (Arithmetic Logic Unit), which performs arithmetic and logic operations.

3. Set Register (File Register), which stores temporary results related to calculations. Special
Registers are also used. The Control Unit also uses Special Registers.

4. Internal bus structure for communication.

central Processing Writwn

The function of the control unit is to decode the binary machine words in the IR (Instruction
Register) and issue appropriate control signals, primarily to the CPU. These control signals are what
cause the computer to execute its programs.

Control Unit Design

There are two related issues when considering control unit design:

1. The complexity of the Instruction Set architecture and

2. The microarchitecture used to implement the control unit. A computer's ISA (Instruction
Set Architecture) is the set of assembly language instructions that the computer can
execute. It can be viewed as an interface between the software (expressed as assembly
language) and the hardware. More complex ISAs require more complicated control units.
At some point in the development of computers, the complexity of the control unit
becomes a problem for designers.

How Control Unit Works

The binary form of the instruction now resides in the IR (Instruction Register). The control unit
decodes the instruction and generates the control signals required for the CPU to act according to
the machine language instructions. The two main design categories here are hardwired and
microprogrammed:

Hardwired — Control sighals are generated as outputs from a series of basic logic gates; the inputs
are from binary bits in the Instruction Register. Microprogram — Control signals are generated by a
microprogram stored in the Control Read Only Memory.

Control Unit Microprogram

In the microprogrammed control unit, control signals correspond to bits in the micro-memory
(CROM for Control Read Only Memory), which are read into the micro-MBR. This register is simply a
set of D flip-flops, the contents of which are transmitted as signals.

Microprogranmed Gentrel Unit

The micro-control unit (CU) performs the following steps:

1. Place the address into the micro-memory Address Register (uUMAR),
2. The control word is read from the Control Read-Only Memory,

3. Place the microcode word into the micro-memory Buffer Register,
4. The control signal is output.

Final Project Digital System
Design

Selamat! Anda sudah hampir menyelesaikan praktikum Perancangan Sistem Digital. Pada modul
terakhir ini, anda diberikan kesempatan untuk membuat sebuah proyek bersama teman kelopok
anda dengan ketentuan sebagai berikut:

Timeline Proyek Akhir

Judul Proyek Diskusikan dengan asisten pendamping (Ditentukan
maksimal Minggu, 24 November 2024)

Waktu Pengumpulan Proyek Minggu, 8 Desember 2024 23.59 WIB

Pekan Presentasi 9 - 13 Desember 2024 (diskusikan dengan asisten
pendamping)

Kriteria Proyek Akhir

1. Proyek akhir mencakup semua modul praktikum. Program dan testbench WAJIB
menggunakan bahasa VHDL beserta penjelasan kode menggunakan komentar.

2. Membuat repository publik di Github untuk pengumpulan proyek. Setiap individu perlu
melakukan commit secara berkala agar kontribusi individu tersebut terlihat di dalam
proyek akhir (akan ada form penilaian kontribusi juga).

3. Wajib mengundang asisten pendamping sebagai collaborator ke dalam repo tersebut dan
ke grup LINE.

4. Dilarang melakukan force push pada repo karena dapat menghapus commit history

5. Wajib membuat README.md pada repository proyek akhir yang berisi penjelasan
mengenai proyek yang Anda buat. Bagian-bagiannya boleh disamakan dengan yang ada
di file laporan dengan tambahan penjelasan snippet kode

e Tutorial: Markdown Crach Course

e Template: Markdown Template
6. Kompleksitas program akan mempengaruhi nilai proyek akhir. Jika proyek akhir yang
Anda buat hanya sebatas dapat memenuhi modul dan kurang cocok diterapkan pada

https://youtu.be/HUBNt18RFbo
https://github.com/matiassingers/awesome-readme

FPGA, maka nilainya akan lebih kecil dibandingkan yang lebih cocok.

e Contoh yang kurang cocok (tidak dilarang): Membuat Vending Machine dapat
diimplementasikan di FPGA atau proyek DSD yang pernah Anda buat dapat juga
diimplementasikan dengan FPGA (VHDL). Akan tetapi, tidak ada orang yang mau
mengimplementasikan hal sesederhana itu di FPGA karena lebih praktis
menggunakan Arduino atau mikrokontroler lain.

e Contoh yang lebih cocok: Membuat hardware accelerator untuk algoritma
tertentu yang sering dipakai.

7. Membuat laporan proyek akhir berdasarkan template yang ada
8. Membuat PPT
9. Minimal mengadaptasi 6 modul praktikum

Bobot Penilaian Proyek Akhir

Kriteria Bobot
Laporan (PDF & MD) 15%
Presentasi (PPT, Penyampaian, dan Tanya Jawab) 20%
Kompleksitas (termasuk Pemahaman) 25%
Kreativitas Ide 10%
Keberhasilan 30%

File dan Tempat Pengumpulan

EMAS2

1. Link Github (di EMAS2)

Github Repository

File laporan PDF

File presentasi PDF

Source code + Testbench

Sintesis program (Quartus atau Vivado)
Simulasi program (Modelsim atau Vivado)

e whH

https://emas2.ui.ac.id
https://emas2.ui.ac.id
https://github.com

6. README.md

Contoh Ide Proyek Akhir

Hanya dijadikan contoh, DILARANG menjiplak ide proyek ini

1. VHDL FP Adder: Mempercepat penjumlahan floating point dengan menggunakan FPGA,
source
2. VHDL Image Color Scaler: Mengubah warna gambar dengan menggunakan FPGA,

source

3. VHDL Image Upscaler: Melakukan Upscaling pada sebuah gambar, source

https://github.com/EdgrantHS/Finpro-PSD
https://github.com/MorpKnight/Image-ColorScaler
https://github.com/Jordinia/Bicubic-Interpolation

