
Procedure, Function, and
Impure Function Synthesis
In VHDL, both "functions" and "procedures" can be used in the description of hardware. However, it
should be understood that hardware synthesis is usually more suitable for implementations based
on deterministic and synchronous behavior. Therefore, there are some restrictions on the use of
functions and procedures in the context of synthesis:

Procedures
Procedures in VHDL perform tasks without returning values. They can also be used in hardware
descriptions to organize operations and code. Hardware synthesis usually replaces a procedure call
with a corresponding physical action in the target hardware. Therefore, deterministic procedures
can be synthesized. However, there are some limitations in the use of procedures that depend on
time streams or behaviors that are difficult to predict. Some VHDL compilers may not support the
synthesis of such procedures.

Functions
VHDL functions that do not have impure properties (e.g., produce deterministic values based on
input arguments alone) can usually be synthesized well.

Impure Functions
Impure functions, which produce results that are not predictable or depend on external factors, are
usually not suitable for deterministic hardware synthesis. Impure functions that depend on random
or non-deterministic behavior will not synthesize well because the resulting hardware must be
deterministic and predictable.

So, while functions and procedures can be used in hardware descriptions and can be synthesized if
they meet specific requirements, impure functions are not usually suitable for VHDL synthesis.

Difference Between It All



Criteria Procedure Function Impure Function

Destination Performing tasks without
returning values

Returns the calculated
values

Returning values with
unpredictable properties

Arguments Can have input and output
arguments

Can have input arguments
only

Can have input arguments
only

Return value No return value Returns a value Returns a value

Usage Used for organizing code
and operations

Used for calculations and
data processing

Used for calculations and
data processing with
unpredictable properties

Example Procedure to add two
numbers

Function to add two
numbers

Function to generate
random numbers

Synthesis Can be synthesized if
deterministic

Can be synthesized if
deterministic

Usually not suitable for
synthesis

Example
Procedure

library IEEE;
use IEEE.STD_LOGIC_1164.ALL;

entity Adder is
    port (
        A, B: in std_logic;
        Sum: out std_logic
    );
end entity;

architecture RTL of Adder is
    procedure add_numbers(a: in std_logic; b: in std_logic; sum: out std_logic) is
    begin
        sum <= a xor b;
    end add_numbers;
begin
    process (A, B)
    begin
        add_numbers(A, B, Sum);
    end process;
end architecture;



Function

Impure Function

library IEEE;
use IEEE.STD_LOGIC_1164.ALL;

entity Adder is
    port (
        A, B: in std_logic;
        Sum: out std_logic
    );
end entity;

architecture RTL of Adder is
    function add_numbers(a: in std_logic; b: in std_logic) return std_logic is
    begin
        return a xor b;
    end add_numbers;
begin
    process (A, B)
    begin
        Sum <= add_numbers(A, B);
    end process;
end architecture;

library IEEE;
use IEEE.STD_LOGIC_1164.ALL;
use IEEE.MATH_REAL.ALL;

entity Adder is
    port (
        Sum: out std_logic
    );
end entity;

architecture RTL of Adder is
    function random_number return std_logic is
    begin
        return REAL'(uniform(0.0, 1.0) > 0.5);
    end random_number;



begin
    process
    begin
        Sum <= random_number;
    end process;
end architecture;

Revision #1
Created 4 October 2024 02:01:10 by GI
Updated 4 October 2024 02:03:13 by GI


