
Module 4 : Software
Timers & Interrupts

Module 4 : Software Timers & Interrupts
External Reference



Module 4 : Software Timers
& Interrupts
Software Timer
Software timer is a feature of FreeRTOS that can call a function when the timer expires. This
function is known as a callback function and is passed to the timer as an argument. The callback
function must be quick and non-blocking, similar to an ISR.

Software timers rely on a tick timer, which is a hardware timer that generates interrupts at a fixed
frequency. The tick timer determines the resolution of the software timer, meaning that we cannot
create a software timer with a period or delay of less than one tick.

There are two types of software timers: one-shot and auto-reload. A one-shot timer will run the
callback function only once after the specified delay. An auto-reload timer will run the callback
function repeatedly at the specified period.

How to Use Software Timer
To use a software timer in FreeRTOS (the vanilla version, not the one currently in use), we need to
include the header file timers.h , which contains API functions for creating, deleting, starting,
stopping, and resetting the timer. We also need to enable the configUSE_TIMERS  setting in the
FreeRTOSConfig.h  file, which will create a background task that manages the software timers.

This background task is called the timer service task or timer daemon. It maintains a list of timers
and calls their callback functions when the timers expire. This task does not run continuously but
wakes up only when the tick timer reaches one of the expiration times.

We do not control the timer service task directly, but instead, we send commands to it via a queue.
The queue is accessed by the API functions, which place commands in the queue to create, start,
stop, and reset timers.

The API functions return a boolean value indicating whether the command was successfully sent to
the queue or not. If the queue is full, we can specify a timeout value to wait for space to become
available in the queue.



How to Create a Software Timer
To create a software timer, we use the xTimerCreate  function, which returns a handle to the timer.
This handle is used to identify and control the timer in other API functions.

The xTimerCreate  function takes five parameters:

1. Timer name, which is a string for debugging purposes.
2. Timer period or delay, in ticks. We can use the macro pdMS_TO_TICKS  to convert

milliseconds to ticks.
3. Auto-reload setting, which can be pdTRUE  for an auto-reload timer or pdFALSE  for a

one-shot timer.
4. Timer ID, which is a pointer to any data type. We can use it to store some information

about the timer or to identify it in the callback function.
5. Callback function, which is the name of the function to be called when the timer expires.

For example, we can create a one-shot timer that will call a function named vOneShotCallback  after
2000 milliseconds with the following code:

We can create an auto-reload timer that will call the vAutoReloadCallback function every 1000
milliseconds with the following code:

Note that we have used different values for the timer ID parameter to distinguish between the two
timers.

We should always check whether the xTimerCreate  function returns a valid handle or not. If it
returns NULL , it means that there is not enough heap memory allocated for the timer.

How to Start a Software Timer
To start a software timer, we use the xTimerStart  function, which takes two parameters:

1. Timer handle that will be started.
2. Timeout value to send the command to the queue.

For example, we can start a one-shot timer and an auto-reload timer with the following code:

TimerHandle_t xOneShotTimer;
xOneShotTimer = xTimerCreate("OneShot", pdMS_TO_TICKS(2000), pdFALSE, (void *) 0, vOneShotCallback);

TimerHandle_t xAutoReloadTimer;
xAutoReloadTimer = xTimerCreate("AutoReload", pdMS_TO_TICKS(1000), pdTRUE, (void *) 1, 
vAutoReloadCallback);



We have used portMAX_DELAY  as the timeout value, which means we will wait indefinitely if the
queue is full.

Note that the xTimerStart  function will also restart the timer if it is already running. This means the
timer will be reset to its initial value.

How to Stop a Software Timer
To stop a software timer, use the following code:

How to Reset a Software Timer
To reset a software timer, use the following code:

How to Delete a Software Timer
To delete a software timer, use the following code:

How to Create a Callback Function
A callback function is a function given to the timer as an argument and called when the timer
expires. This function should not return anything and should take the timer handle as a parameter.

if (xOneShotTimer != NULL) {
    xTimerStart(xOneShotTimer, portMAX_DELAY);
}

if (xAutoReloadTimer != NULL) {
    xTimerStart(xAutoReloadTimer, portMAX_DELAY);
}

if (xAutoReloadTimer != NULL) { xTimerStop(xAutoReloadTimer, portMAX_DELAY); }

if (xOneShotTimer != NULL) { xTimerReset(xOneShotTimer, portMAX_DELAY); }

if (xOneShotTimer != NULL) { xTimerDelete(xOneShotTimer, portMAX_DELAY); }

if (xAutoReloadTimer != NULL) { xTimerDelete(xAutoReloadTimer, portMAX_DELAY); }



We can use the timer handle to identify which timer called the function or to access the ID or other
information. We can also use the xTimerChangePeriod  function to change the period of a running
timer from within the callback function.

We should write our callback function in a manner similar to an ISR: it should be quick and non-
blocking, avoiding the use of delay functions or blocking operations with queues, mutexes, and
semaphores. The callback function should avoid calling API functions that are not interrupt-safe.

For example, we can write one-shot and auto-reload callback functions with the following code:

Real-Time Operating System
(RTOS) and Hardware Interrupts
A Real-Time Operating System (RTOS) is a software platform that allows embedded systems to run
multiple tasks concurrently and efficiently. One of the key features of an RTOS is the ability to
handle hardware interrupts, which are signals that notify the processor of asynchronous events
requiring immediate attention.

Hardware interrupts can be generated by various sources, such as timers, buttons, communication
buses, or sensors. For example, a timer can trigger an interrupt when it reaches a certain count, or
a button can trigger an interrupt when pressed by the user. These interrupts can be used to

void vOneShotCallback(TimerHandle_t xTimer) { // Get the timer ID 
    uint32_t ulTimerID = (uint32_t) pvTimerGetTimerID(xTimer);
    // Check if it is our one-shot timer
    if (ulTimerID == 0) {
        // Do something once
        Serial.println("One-shot timer expired");
    }
}

void vAutoReloadCallback(TimerHandle_t xTimer) { // Get the timer ID 
    uint32_t ulTimerID = (uint32_t) pvTimerGetTimerID(xTimer);
    // Check if it is our auto-reload timer
    if (ulTimerID == 1) {
        // Do something repeatedly
        Serial.println("Auto-reload timer expired");
    }
}



perform specific actions or gather data from devices.

However, hardware interrupts also pose several challenges for RTOS developers. For instance, how
to synchronize shared data and variables between interrupt service routines (ISRs) and tasks? How
to avoid blocking or delaying other interrupts or tasks when processing an interrupt? How to use
RTOS API functions correctly and safely within an ISR?

Setting Up Hardware Interrupts
Let's start with a simple example of setting up a hardware timer interrupt on the ESP32. The ESP32
has four timers, each with a 16-bit prescaler and a 64-bit counter. The default timer base clock is
80 MHz, which means the timer ticks 80 million times per second.

We can use a prescaler to reduce the timer frequency. For example, if we set the prescaler to 80,
the timer will tick at 1 MHz, or one million times per second. We can also set a maximum count
value for the timer, which determines when the timer will trigger an interrupt. For instance, if we
set the maximum count to one million, the timer will trigger an interrupt every second.

We can use the ESP32 HAL timer library included with the Arduino package to configure and start
the timer. We also need to define an ISR function that will execute when the timer interrupt occurs.
In this example, we will simply toggle an LED within the ISR.

Code to Set Up Timer Interrupt
// Define LED pin
#define LED_PIN 2

// Define timer handle
hw_timer_t *timer = NULL;

// Define ISR function
void IRAM_ATTR onTimer() {
  // Toggle LED
  digitalWrite(LED_PIN, !digitalRead(LED_PIN));
}

void setup() {
  // Configure LED pin as output
  pinMode(LED_PIN, OUTPUT);



Timer Interrupt and Synchronizing
Variables between ISRs and Tasks
If we upload this code to an ESP32 board, we should see the LED blinking with a one-second
interval.

Synchronizing Variables between ISRs and Tasks
A common scenario in embedded systems is to collect data from a device using an ISR and then
process that data in a task. For example, we might want to sample an analog value from a sensor
at a regular interval using a timer interrupt, and then compute some statistics or perform
calculations on that value in a task.

However, this also means we need to share some variables between the ISR and the task. For
instance, we may need to store the sampled values in a global variable or buffer that can be
accessed by both the ISR and the task. This introduces some challenges for synchronization and
concurrency control.

One of the main challenges is that an ISR can interrupt a task at any time and modify shared
variables while the task is using them. This can result in inconsistent or corrupted data. For
example, consider a global variable storing an integer value. The ISR increments this variable by
one every time it runs. The task decrements this variable by one in a loop and prints its value.

  // Create and start hardware timer number 0
  timer = timerBegin(0, 80, true);

  // Configure ISR as a callback function
  timerAttachInterrupt(timer, &onTimer, true);

  // Set maximum count value
  timerAlarmWrite(timer, 1000000, true);

  // Enable timer interrupt
  timerAlarmEnable(timer);
}

void loop() {
  // Do nothing
}



If we don't synchronize this variable properly, we might encounter issues. For instance, if the initial
value of the variable is zero. The task reads this value and prepares to decrement it by one.
However, before it can write the new value of negative one, an ISR occurs and increments the
variable by one. The ISR finishes and returns to the task. The task then writes back its computed
value, negative one, overwriting the one that was just set by the ISR. The result is incorrect,
negative one instead of zero.

To avoid such issues, we need to protect the shared variable from being accessed simultaneously
by both the ISR and the task. One way to do this is by using critical sections. A critical section is a
code segment that disables interrupts and prevents context switching while it is executing. This
ensures that the shared variable is accessed by only one entity at a time.

In FreeRTOS, we can use special functions to enter and exit critical sections. For example, we can
use taskENTER_CRITICAL()  and taskEXIT_CRITICAL()  in tasks, and portENTER_CRITICAL_ISR()  and
portEXIT_CRITICAL_ISR()  in ISRs. These functions also use spinlocks to prevent tasks on other cores
from entering the critical section.

Here is an example of using critical sections to protect shared variables between an ISR and a task:

Code for Synchronizing Variables between
ISRs and Tasks

// Define LED pin
#define LED_PIN 2

// Define timer handle
hw_timer_t *timer = NULL;

// Define global variable
volatile int counter = 0;

// Define ISR function
void IRAM_ATTR onTimer() {
  // Enter critical section
  portENTER_CRITICAL_ISR(&timerMux);

  // Increment global variable
  counter++;

  // Exit critical section



  portEXIT_CRITICAL_ISR(&timerMux);
}

// Define task function
void printValues(void * parameter) {
  // Loop forever
  while (true) {
    // Enter critical section
    taskENTER_CRITICAL();

    // Decrement global variable
    counter--;

    // Exit critical section
    taskEXIT_CRITICAL();

    // Print global variable
    Serial.println(counter);

    // Wait for two seconds
    delay(2000);
  }
}

void setup() {
  // Start serial terminal
  Serial.begin(115200);

  // Configure LED pin as output
  pinMode(LED_PIN, OUTPUT);

  // Create and start hardware timer number 0
  timer = timerBegin(0, 8, true);

  // Configure ISR as a callback function
  timerAttachInterrupt(timer, &onTimer, true);

  // Set maximum count value
  timerAlarmWrite(timer, 100000, true);



If we upload this code to our ESP32 board, we should see the global variable counting down from
some value every two seconds. We may also observe some repeated values, indicating that the ISR
is running between the serial print statements. This behavior is expected, as we want the ISR to
run asynchronously and separately from the task.

Using Semaphores for Synchronizing ISR
and Tasks
Another way to synchronize an ISR and a task is by using semaphores. A semaphore is a signaling
mechanism that can be used to control access to shared resources or to notify a task about an
event. Semaphores can have binary or counting values. A binary semaphore can only have two
states: available or taken. A counting semaphore can have multiple states: from zero to a
maximum value.

Semaphores can be taken or given by tasks or ISRs. Taking a semaphore means acquiring or
locking the semaphore. Giving a semaphore means releasing or unlocking it. A task can be blocked
on a semaphore until it becomes available. An ISR cannot be blocked on a semaphore but can give
a semaphore to unlock a waiting task.

One common use case for a semaphore is to signal a task when some data is ready to be
processed by an ISR. For example, we might want to sample analog values from different sensors
at a regular interval using a timer interrupt and then compute some statistics or perform
calculations on those values in a task.

In this case, we can use a binary semaphore to notify the task when the ISR has sampled new
values. The ISR will store the sampled values in a global variable and give the semaphore. The task
will wait on the semaphore and take it when available. The task will then read the global variable
and process the sampled values.

However, we need to use special functions ending with FromISR  when using semaphores within an
ISR. These functions will never block and will also check if giving the semaphore has unlocked a

  // Enable timer interrupt
  timerAlarmEnable(timer);

  // Create and start task
  xTaskCreatePinnedToCore(printValues, "Print Values", 10000, NULL, 1, NULL, app_cpu);
}

void loop() {
  // Do nothing
}



higher-priority task. If so, they will request a context switch so that the higher-priority task can run
immediately after the ISR finishes.

Here is an example of using a binary semaphore to synchronize an ISR and a task:

// Define global variables
SemaphoreHandle_t binarySemaphore;
volatile int sampledValue = 0;

// Define ISR function
void IRAM_ATTR onTimer() {
  // Store sampled value
  sampledValue = analogRead(A0);

  // Give semaphore
  xSemaphoreGiveFromISR(binarySemaphore, NULL);
}

// Define task function
void processValues(void * parameter) {
  while (true) {
    // Wait for semaphore
    if (xSemaphoreTake(binarySemaphore, portMAX_DELAY) == pdTRUE) {
      // Process sampled value
      Serial.println(sampledValue);
    }
  }
}

void setup() {
  // Start serial terminal
  Serial.begin(115200);

  // Create binary semaphore
  binarySemaphore = xSemaphoreCreateBinary();

  // Create and start hardware timer
  timer = timerBegin(0, 80, true);
  timerAttachInterrupt(timer, &onTimer, true);
  timerAlarmWrite(timer, 1000000, true);



In this example, the ISR samples a value and gives the semaphore. The task waits for the
semaphore, takes it when available, and processes the sampled value.

Using Semaphores for Synchronizing ISR
and Tasks
Another way to synchronize an ISR and a task is by using semaphores. A semaphore is a signaling
mechanism that can be used to control access to shared resources or notify a task about an event.
Semaphores can have binary or counting values. A binary semaphore can only have two states:
available or taken. A counting semaphore can have multiple states: from zero to a maximum value.

Semaphores can be taken or given by tasks or ISRs. Taking a semaphore means acquiring or
locking the semaphore. Giving a semaphore means releasing or unlocking it. A task can be blocked
on a semaphore until it becomes available. An ISR cannot be blocked on a semaphore but can give
a semaphore to unlock a waiting task.

One common use case for a semaphore is to signal a task when some data is ready to be
processed by an ISR. For example, we might want to sample analog values from different sensors
at a regular interval using a timer interrupt and then compute some statistics or perform
calculations on those values in a task.

In this case, we can use a binary semaphore to notify the task when the ISR has sampled new
values. The ISR will store the sampled values in a global variable and give the semaphore. The task
will wait on the semaphore and take it when available. The task will then read the global variable
and process the sampled values.

However, we need to use special functions ending with FromISR  when using semaphores within an
ISR. These functions will never block and will also check if giving the semaphore has unlocked a
higher-priority task. If so, they will request a context switch so that the higher-priority task can run
immediately after the ISR finishes.

Here is an example of using a binary semaphore to synchronize an ISR and a task:

  timerAlarmEnable(timer);

  // Create and start task
  xTaskCreatePinnedToCore(processValues, "Process Values", 10000, NULL, 1, NULL, app_cpu);
}

void loop() {
  // Do nothing
}



// Define LED pin
#define LED_PIN 2

// Define timer handler
hw_timer_t *timer = NULL;

// Define global variable
volatile int adcValue = 0;

// Define binary semaphore
SemaphoreHandle_t binSemaphore = NULL;

// Define ISR function
void IRAM_ATTR onTimer() {
  // Sample analog value from pin 34
  adcValue = analogRead(34);

  // Give binary semaphore
  xSemaphoreGiveFromISR(binSemaphore, NULL);
}

// Define task function
void processValues(void * parameter) {
  // Loop forever
  while (true) {
    // Wait for binary semaphore
    xSemaphoreTake(binSemaphore, portMAX_DELAY);

    // Process the sampled value
    Serial.println(adcValue);

    // Wait for one second
    delay(1000);
  }
}

void setup() {
  // Start serial terminal
  Serial.begin(115200);



Using Queues to Pass Data Between ISR
and Tasks
Another way to pass data between an ISR and a task is by using queues. A queue is a data
structure that can hold multiple items of the same type in a FIFO (first-in, first-out) order. Queues
can be created with fixed sizes and fixed item sizes. Queues can be filled or emptied by tasks or
ISRs. Filling a queue means adding items to the end of the queue, while emptying a queue means
removing items from the front.

A task can be blocked on a queue until it is full or empty. An ISR cannot be blocked on a queue but
can fill or empty a queue and check if filling the queue has unlocked a higher-priority task. If so, the
ISR will request a context switch so that the higher-priority task can run immediately after the ISR

  // Configure LED pin as output
  pinMode(LED_PIN, OUTPUT);

  // Create and start hardware timer number 0
  timer = timerBegin(0, 8, true);

  // Configure ISR as callback function
  timerAttachInterrupt(timer, &onTimer, true);

  // Set maximum alarm value
  timerAlarmWrite(timer, 100000, true);

  // Enable timer interrupt
  timerAlarmEnable(timer);

  // Create binary semaphore
  binSemaphore = xSemaphoreCreateBinary();

  // Create and start task
  xTaskCreatePinnedToCore(processValues, "Process Values", 10000, NULL, 1, NULL, app_cpu);
}

void loop() {
  // Do nothing
}



completes.

A common use case for a queue is to pass several data items from an ISR to a task. For example,
we might want to sample analog values from different sensors at a regular interval using a timer
interrupt and then compute some statistics or perform calculations on those values in a task.

In this case, we can use a queue to store the sampled values in an array or structure. The ISR will
place the array or structure into the queue. The task will take the array or structure from the queue
and process the sampled values.

Here is an example of using a queue to pass data between an ISR and a task:

// Define LED pin
#define LED_PIN 2

// Define timer handler
hw_timer_t *timer = NULL;

// Define data structure
typedef struct {
  int adcValue1;
  int adcValue2;
} sensorData_t;

// Define queue handler
QueueHandle_t sensorQueue = NULL;

// Define ISR function
void IRAM_ATTR onTimer() {
  // Create an instance of the data structure
  sensorData_t data;

  // Sample analog values from pin 34 and 35
  data.adcValue1 = analogRead(34);
  data.adcValue2 = analogRead(35);

  // Send the data structure to the queue
  xQueueSendFromISR(sensorQueue, &data, NULL);
}

// Define task function



void processValues(void * parameter) {
  // Create an instance of the data structure
  sensorData_t data;

  // Loop forever
  while (true) {
    // Receive the data structure from the queue
    xQueueReceive(sensorQueue, &data, portMAX_DELAY);

    // Process the sampled values
    Serial.print(data.adcValue1);
    Serial.print(" ");
    Serial.println(data.adcValue2);

    // Wait for one second
    delay(1000);
  }
}

void setup() {
  // Start serial terminal
  Serial.begin(115200);

  // Configure LED pin as output
  pinMode(LED_PIN, OUTPUT);

  // Create and start hardware timer number 0
  timer = timerBegin(0, 8, true);

  // Configure ISR as callback function
  timerAttachInterrupt(timer, &onTimer, true);

  // Set maximum alarm value
  timerAlarmWrite(timer, 100000, true);

  // Enable timer interrupt
  timerAlarmEnable(timer);

  // Create a queue with size 10 and item size sensorData_t
  sensorQueue = xQueueCreate(10, sizeof(sensorData_t));



  // Create and start task
  xTaskCreatePinnedToCore(processValues, "Process Values", 10000, NULL, 1, NULL, app_cpu);
}

void loop() {
  // Do nothing
}



External Reference
Check out the external reference by digikey: Software Timers & Hardware Interrupts

https://www.digikey.com/en/maker/projects/introduction-to-rtos-solution-to-part-8-software-timers/0f64cf758da440a29476165a5b2e577e
https://www.digikey.com/en/maker/projects/introduction-to-rtos-solution-to-part-9-hardware-interrupts/3ae7a68462584e1eb408e1638002e9ed

