Module 7 : WIFI,
HTTP, and MQTT

e Module 7: WiFi, HTTP(S), & MQTT(S)




OpenSSL

This guide provides instructions on using OpenSSL to:

1. Test SSL/TLS connections with a server.
2. Generate a new private key and a self-sighed certificate for client authentication.

1. Testing SSL/TLS Connection with
openssl s client

The openssl s _client command is a tool for checking SSL/TLS connections with servers. It's
commonly used to verify if a server's certificate is valid and to view the server’s full certificate
chain.

Command:

openssl s_client -connect {Host}:{Port} -showcerts

Explanation:

e s client : Starts an SSL/TLS client connection.

e -connect {Host}:{Port} : Connects to the specified server and port (replace {Host} and
{Port} with the appropriate values for your server, e.g., broker.hivemg.com:8883 or
www.typicode.com:443 ).

e -showcerts : Displays all certificates in the server’s certificate chain.

Steps:

1. Finding Server Common Name

Open your browser and find the settings like below then click on "Connection is secure".

age noyfpund or type unknown




Click on "Certificate is valid"

age noyfpund or type unknown

Here you can find the server's common name which will be our host which is typicode.com. If it is a
web server, then you need to add www. in front of the CN. Hence, our host is www.typicode.com

age noyfpund or type unknown

2. Finding your Port
For the port, you need to know which protocol you are using.
Ports that we will be using in this module :

o HTTPS - 443
« MQTTS - 8883

So in this example, if we want to connect and hit the API from
https://jsonplaceholder.typicode.com, our {Host}:{Port} combination will be

www.typicode.com:443

3. Run the Command

openssl s_client -connect www.typicode.com:443 -showcerts

Then you need to scroll down and get the LAST certificate.

age noyfpund or type unknown

This will be your server's root CA.

2. Generating a New RSA Key and
Self-Signed Certificate with openss|
req



This command generates a new private key and a self-signed certificate, which can be used for
client authentication.

Command:

openssl req -newkey rsa:2048 -nodes -keyout client_key.pem -x509 -days 365 -out client_cert.pem

Explanation:

e -req: Starts a new certificate request or generates a self-signed certificate.

e -newkey rsa:2048: Creates a new RSA key with a size of 2048 bits.

e -nodes: Ensures the private key is created without password encryption.

o -keyout client_key.pem: Saves the generated private key in client_key.pem.

e -x509: Generates a self-signed certificate instead of a certificate signing request (CSR).
e -days 365: Sets the certificate to be valid for 365 days.

o -out client_cert.pem: Outputs the certificate to client_cert.pem.

Steps:
1. Run the Command
Enter the command in your terminal to generate the private key and certificate.
2. Provide Certificate Details
Note, for testing purposes of this module, you can skip this step and fill blanks in all details.

You'll be prompted to enter information like Country, State, Organization, Common Name (CN), and
Email Address. These fields will be included in the certificate’'s Subject field. The Common Name
(CN) field is important, as it typically contains the hostname of the server or a unique identifier for
the client in a client certificate setup. Check Output Files:

3. After completion, you should find two new files

client_key.pem: This is your private key. Keep it secure, as it identifies you in a client-server
interaction.

client_cert.pem: This is your self-signed certificate, which can be provided to a server for
authentication if client certificate verification is set up.

You can open them with notepad to see the certificate



Example Codes

WIFiI Events

The ESP32 WiFi library provides several events that allow you to monitor the WiFi connection status
and respond to changes in network conditions. These events can be handled using event handlers
in your code to manage WiFi connections more effectively.

ARDUINO_EVENT WIFI_STA_GOT [P

e Triggered when the ESP32 station got IP from connected AP
#include <WiFi.h>

const char* ssid = "ssid";

const char* password = "password";
void WiFiGotIP(WiFiEvent_t event, WiFiEventinfo_t info){
Serial.printIn("WiFi connected");

Serial.printIn("IP address: ");

Serial.printin(WiFi.locallP());
void setup(){
Serial.begin(115200);
WiFi.onEvent(WiFiGotIP, WiFiEvent_t::ARDUINO_EVENT_WIFI_STA GOT_IP);
WiFi.begin(ssid, password);
Serial.printin();

Serial.printin();

Serial.printin("Wait for WiFi... ");

void loop(){



delay(1000);

NTP Server

The ESP32 can be configured to fetch the current time and date from NTP servers over the internet.
This is particularly useful in projects requiring accurate timestamps, scheduling, or clock
synchronization. With the built-in WiFi capabilities of the ESP32, connecting to an NTP server is
simple.

Using the configTime() function, the ESP32 can communicate with an NTP server to get the current
time and date. This function takes the timezone offset and NTP server URLs as parameters. Once
configured, the ESP32 will maintain the time internally, even if it disconnects from WiFi.

#include <WiFi.h>

#include <time.h>

const char* ssid = "ssid";

const char* password = "password";

const char* ntpServer = "id.pool.ntp.org";

const long gmtOffset sec = 25200; // GMT offset in seconds (e.g., +25200 for WIB because 7 * 3600)

void setup(){
Serial.begin(115200);

/I Connect to Wi-Fi
Serial.print("Connecting to ");
Serial.printin(ssid);
WiFi.begin(ssid, password);
while (WiFi.status() '= WL_CONNECTED) {
delay(500);
Serial.print(".");
}
Serial.printin("");

Serial.printIn("WiFi connected.");

// Init and get the time

configTime(gmtOffset_sec, 0, ntpServer);



printLocalTime();

void loop(){
delay(1000);

printLocalTime();

void printLocalTime(){
struct tm timeinfo;
if('getLocalTime(&timeinfo)){
Serial.printin("Failed to obtain time");
return;
}
Serial.printin(&timeinfo, "%A, %B %d %Y %H:%M:%S");
Serial.print("Day of week: ");
Serial.printin(&timeinfo, "%A");
Serial.print("Month: ");
Serial.printin(&timeinfo, "%B");
Serial.print("Day of Month: ");
Serial.printin(&timeinfo, "%d");
Serial.print("Year: ");
Serial.printin(&timeinfo, "%Y");
Serial.print("Hour: ");
Serial.printin(&timeinfo, "%H");
Serial.print("Hour (12 hour format): ");
Serial.printin(&timeinfo, "%l");
Serial.print("Minute: ");
Serial.printin(&timeinfo, "%M");
Serial.print("Second: ");

Serial.printin(&timeinfo, "%S");

HTTPClient

The HTTPClient library on the ESP32 enables you to perform HTTP requests (GET, POST, PUT,
DELETE) with ease. This is especially useful for applications where the ESP32 interacts with web
servers, APIs, or cloud services over HTTP or HTTPS. The library provides a straightforward API for
making HTTP requests, handling responses, and managing errors.



#include <Arduino.h>
#include <WiFi.h>
#include <WiFiClientSecure.h>

#include <HTTPClient.h>

const char ssid[] = "ssid";
const char password[] = "password";
const char *server_cert = R"(----- BEGIN CERTIFICATE-----

Get the server's root CA by running the command below

openssl s_client -connect {Host}:{Port} -showcerts

----- END CERTIFICATE-----)";

const char *client_cert = R"(----- BEGIN CERTIFICATE-----

Generate client certificates by running the command below

openssl req -newkey rsa:2048 -nodes -keyout client_key.pem -x509 -days 365 -out client_cert.pem

Fill client_cert with client_cert.pem

----- END CERTIFICATE-----)";

const char *client_key = R"(-----BEGIN PRIVATE KEY-----
Fill client_key with client_key.pem

----- END PRIVATE KEY-----)";

void setup() {
Serial.begin(115200);
WiFi.begin(ssid, password);
Serial.printf("Connecting to WiFi with SSID : %s\n", ssid);
while(!WiFi.isConnected());

Serial.printin("Connection succesful");

delay(1000);

void loop() {
WiFiClientSecure *client = new WiFiClientSecure;
if(client) {

client->setCACert(server_cert);



client->setCertificate(client_cert);

client->setPrivateKey(client_key);

// Add a scoping block for HTTPClient https to make sure it is destroyed before WiFiClientSecure *client is

HTTPClient https;

Serial.print("[HTTPS] begin...\n");

if (https.begin(*client, "https://httpbin.org/get")) { // HTTPS
Serial.print("[HTTPS] GET...\n");
/] start connection and send HTTP header

int httpCode = https.GET();

/I httpCode will be negative on error
if (httpCode > 0) {
// HTTP header has been send and Server response header has been handled

Serial.printf("[HTTPS] GET... code: %d\n", httpCode);

// file found at server
if (httpCode == HTTP_CODE_OK || httpCode == HTTP_CODE_MOVED_PERMANENTLY) {
String payload = https.getString();
Serial.printin(payload);
}
} else {
Serial.printf("[HTTPS] GET... failed, error: %s\n", https.errorToString(httpCode).c_str());
}
https.end();
} else {

Serial.printf("[HTTPS] Unable to connect\n");

// End extra scoping block

delete client;
} else {

Serial.printin("Unable to create client");



Serial.printin();
Serial.printin("Waiting 10s before the next round...");

delay(10000);

ArduinoJSON

ArduinoJSON is a library for the Arduino/ESP32 to serialize and de-serialize JSON documents. Below
is an example of JSON de-serializing from the endpoint https://httpbin.org/get

#include <Arduino.h>
#include <WiFi.h>

#include <WiFiClientSecure.h>
#include <HTTPClient.h>

#include <ArduinojJson.h>

const char ssid[] = "ssid";
const char password[] = "password";
const char *server_cert = R"(----- BEGIN CERTIFICATE-----

Get the server's root CA by running the command below

openssl s_client -connect {Host}:{Port} -showcerts

----- END CERTIFICATE-----)";

const char *client_cert = R"(----- BEGIN CERTIFICATE-----

Generate client certificates by running the command below
openssl req -newkey rsa:2048 -nodes -keyout client_key.pem -x509 -days 365 -out client_cert.pem

Fill client_cert with client_cert.pem

----- END CERTIFICATE-----)";
const char *client_key = R"(----- BEGIN PRIVATE KEY-----
Fill client_key with client_key.pem

----- END PRIVATE KEY-----)";

void setup() {



Serial.begin(115200);

WiFi.begin(ssid, password);

Serial.printf("Connecting to WiFi with SSID : %s\n", ssid);
while (!WiFi.isConnected());

Serial.printin("Connection successful");

delay(1000);

void loop() {
WiFiClientSecure *client = new WiFiClientSecure;
if (client) {
client->setCACert(server_cert);
client->setCertificate(client_cert);

client->setPrivateKey(client_key);

// Add a scoping block for HTTPClient https to ensure it is destroyed before WiFiClientSecure *client is
HTTPClient https;

Serial.print("[HTTPS] begin...\n");

if (https.begin(*client, "https://httpbin.org/get")) { // HTTPS
Serial.print("[HTTPS] GET...\n");
/] start connection and send HTTP header

int httpCode = https.GET();

/I httpCode will be negative on error
if (httpCode > 0) {
// HTTP header has been sent and Server response header has been handled

Serial.printf("[HTTPS] GET... code: %d\n", httpCode);

// file found at server

if (nttpCode == HTTP_CODE_OK || httpCode == HTTP_CODE_MOVED PERMANENTLY) {
String payload = https.getString();
Serial.printin(payload);

// Parse JSON payload
DynamicJsonDocument doc(1024);

DeserializationError error = deserializeJson(doc, payload);



if (‘error) {
/] Extract "origin" and "url" values
const char* origin = doc["origin"];

const char* url = doc["url"];

/l Print extracted values
Serial.printf("Origin: %s\n", origin);
Serial.printf("URL: %s\n", url);

} else {
Serial.print("JSON parsing failed: ");

Serial.printin(error.c_str());

}
} else {
Serial.printf("[HTTPS] GET... failed, error: %s\n", https.errorToString(httpCode).c_str());
}
https.end();
} else {

Serial.printf("[HTTPS] Unable to connect\n");
// End extra scoping block

delete client;
} else {

Serial.printin("Unable to create client");

Serial.printin();
Serial.printin("Waiting 10s before the next round...");

delay(10000);

MQTT (PubSubClient)

Basic MQTT example



This sketch demonstrates the basic capabilities of the library. It connects to an MQTT server then:

e publishes "hello world" to the topic "outTopic"
e subscribes to the topic "inTopic", printing out any messages it receives. NB - it assumes
the received payloads are strings not binary

It will reconnect to the server if the connection is lost using a blocking reconnect function.

#include <Arduino.h>
#include <WiFi.h>
#include <WiFiClientSecure.h>

#include <PubSubClient.h>

const char ssid[] = "ssid";
const char password[] = "password";
const char *server_cert = R"(-----BEGIN CERTIFICATE-----

Get the server's root CA by running the command below

openssl s_client -connect {Host}:{Port} -showcerts

----- END CERTIFICATE-----)";

const char *client_cert = R"(----- BEGIN CERTIFICATE-----

Generate client certificates by running the command below

openssl req -newkey rsa:2048 -nodes -keyout client_key.pem -x509 -days 365 -out client_cert.pem

Fill client_cert with client_cert.pem

----- END CERTIFICATE-----)";

const char *client_key = R"(----- BEGIN PRIVATE KEY-----
Fill client_key with client_key.pem

----- END PRIVATE KEY-----)";

const char mqttServer[] = "broker.hivemqg.com";

const int mqttPort = 8883;

void callback(char* topic, byte* payload, unsigned int length) {
Serial.print("Message arrived [");
Serial.print(topic);
Serial.print("] ");
for (int i=0;i<length;i++) {



Serial.print((char)payloadlil);
}

Serial.printin();

WiFiClientSecure wifiClient;

PubSubClient client(wifiClient);

void reconnect() {
/I Loop until we're reconnected
while (!client.connected()) {
Serial.print("Attempting MQTT connection...");
// Attempt to connect
if (client.connect("arduinoClient")) {
Serial.printin("connected");
// Once connected, publish an announcement...
client.publish("outTopic","hello world");
/l ... and resubscribe
client.subscribe("inTopic");
} else {
Serial.print("failed, rc=");
Serial.print(client.state());
Serial.printin(" try again in 5 seconds");
// Wait 5 seconds before retrying

delay(5000);

void setup()

{
Serial.begin(115200);

client.setServer(mqttServer, mqttPort);

client.setCallback(callback);

WiFi.begin(ssid, password);

wifiClient.setCACert(server_cert);

wifiClient.setCertificate(client_cert);



wifiClient.setPrivateKey(client_key);

delay(1000);

void loop()
{
if (!client.connected()) {
reconnect();

}

client.loop();



Module 7: WiFi, HTTP(S), &
MQTT(S)

Basics of WiFi Networking

WIiFi Standards and Protocols

Wi-Fi is a technology that allows devices to connect to a wireless network and exchange data. Wi-Fi
is based on the IEEE 802.11 standard, which defines the physical and data link layers of a network.
There are several versions of the IEEE 802.11 standard, such as 802.11a, 802.11b, 802.11g,
802.11n, 802.11ac, and 802.11ax. Each version has different characteristics, such as frequency
bands, data rates, modulation schemes, and range.

The ESP32 supports the following Wi-Fi standards:

e 802.11b: Operates on the 2.4 GHz band with a maximum data rate of 11 Mbps.

e 802.119g: Operates on the 2.4 GHz band with a maximum data rate of 54 Mbps.

e 802.11n: Operates on either the 2.4 GHz or 5 GHz band, with a maximum data rate of
150 Mbps (single stream) or 300 Mbps (dual stream).

The ESP32 also supports the following Wi-Fi protocols:

e WEP: Wired Equivalent Privacy, a legacy encryption protocol that is insecure and not
recommended.

WPA: Wi-Fi Protected Access, an enhanced encryption protocol using TKIP (Temporal Key
Integrity Protocol) or AES (Advanced Encryption Standard).

WPA2: Wi-Fi Protected Access 2, a more secure encryption protocol using AES, providing
stronger security than WPA.

WPA3: Wi-Fi Protected Access 3, a new encryption protocol offering more robust security
and privacy features than WPAZ2.

Network Types and Their Relevance

There are three main types of Wi-Fi networks that the ESP32 can operate in:



1. Infrastructure: The most common type of Wi-Fi network, where the ESP32 connects to
an access point (AP) like a router or hotspot. The AP acts as a bridge between the ESP32
and the internet or other devices on the same network. The AP also assigns an IP address
to the ESP32 and manages network traffic.

2. Ad-hoc: In this Wi-Fi network type, the ESP32 connects directly to another device without
needing an AP. The ESP32 and the other device form a peer-to-peer network and assign IP
addresses to each other. This network type is useful for temporary or local
communication, such as file sharing or gaming.

3. Wi-Fi Direct: In this Wi-Fi network type, the ESP32 connects to another device that
supports Wi-Fi Direct, such as a smartphone or printer. The ESP32 and the other device
form a one-to-one network and communicate using established protocols like P2P (Peer-
to-Peer) or Miracast. This network type is useful for specific applications like streaming or
printing.

The ESP32 can operate in any of these network types, depending on the configured mode:

1. Station mode (STA): The ESP32 acts as a station and connects to an AP. This is the
default mode for the ESP32.

2. Access Point mode (AP): The ESP32 acts as an AP, allowing other stations to connect to
it. The ESP32 can also provide internet access to connected stations using NAT (Network
Address Translation) or routing.

3. Station/AP coexistence mode (STA+AP): The ESP32 operates as both a station and an
AP simultaneously. The ESP32 can connect to another AP as a station and provide a
separate network as an AP. This mode is useful for extending the range of an existing
network or creating a bridge between two networks.

4. NAN mode (NAN): The ESP32 acts as a node in a NAN (Neighbor Awareness Networking)
network. NAN is a new Wi-Fi standard that allows devices to discover and communicate
with each other without an AP. NAN is designed for low-power and proximity-based
applications, such as social networking or location-based services.

IP Addressing, DHCP, DNS, and
Other Network Fundamentals

An IP address is a unique identifier assighed to a device on a network. IP addresses consist of four
numbers separated by dots, like 192.168.1.100 . Each humber can range from 0 to 255. IP addresses
can be static or dynamic. A static IP address remains constant, while a dynamic IP address is
assigned by a DHCP (Dynamic Host Configuration Protocol) server and may change over time.

A DHCP server is a device that manages IP address allocation on a network. A DHCP server can be
an AP, router, or dedicated server. The DHCP server assigns an IP address to a device upon request
and releases it when the device disconnects or its lease expires. The DHCP server also provides
other network information, such as subnet mask, gateway, and DNS server.



A subnet mask is a number that defines the size and structure of a network. It consists of four
numbers separated by dots, such as 255.255.255.0 . Each number can be 255 or 0. The subnet mask
specifies which part of an IP address belongs to the network and which part belongs to the host.
For example, if the subnet mask is 255.255.255.0 , the first three numbers of the IP address
represent the network, while the last number represents the host.

A gateway is a device that connects two or more networks and routes traffic between them. A
gateway can be an AP, router, or dedicated device. The gateway has an IP address on each
network it connects. For example, if a gateway connects a local network ( 192.168.1.0/24 ) to the
internet ( 0.0.0.0/0 ), it has the IP address 192.168.1.1 on the local network and 1.2.3.4 on the
internet.

A DNS server is a device that translates domain names into IP addresses. A domain name is a
human-readable identifier for a website or service on the internet, such as www.bing.com . The DNS
server maintains a database of domain names and their corresponding IP addresses. A DNS server
can be an AP, router, or dedicated server. A DNS server can also cache previous query results to
speed up resolution.

The ESP32 can obtain an IP address and other network information from a DHCP server when
connected to an AP as a station. The ESP32 can also act as a DHCP server when operating as an AP
and assign IP addresses to connected stations. The ESP32 can use a DNS server to resolve domain
names to IP addresses when accessing the internet or other services.

Wi-Fi Capabilities of ESP32

Hardware Capabilities

The ESP32 supports the following Wi-Fi features:

« WMM: Wi-Fi Multimedia, a quality of service (QoS) feature that prioritizes traffic based on
four access categories: voice, video, best effort, and background.

e TX/RX A-MPDU: Aggregated MAC Protocol Data Unit, a technique that combines multiple
frames into a single transmission unit, reducing overhead and increasing throughput.

e RX A-MSDU: Aggregated MAC Service Data Unit, a technique that combines multiple
frames from the same sender into one frame, reducing overhead and increasing
throughput.

e Immediate Block ACK: A mechanism that allows the receiver to acknowledge multiple
frames in a single response, reducing latency and improving efficiency.

o Defragmentation: A mechanism that reassembles fragmented frames at the receiver,
enhancing reliability and performance.

e Automatic Beacon Monitoring: A hardware feature that tracks the timestamp and
beacon interval of the connected AP, allowing for power savings and fast reconnection.



e 4 x Virtual Wi-Fi Interfaces: Allows the ESP32 to create up to four logical Wi-Fi
interfaces, such as station, softAP, or promiscuous mode, and operate them
simultaneously.

e Antenna Diversity: Allows the ESP32 to switch between two antennas dynamically,
depending on signal quality and power consumption.

Dual-Mode Functionality and Use Cases

The ESP32 can operate in two Wi-Fi modes: station mode and access point mode. In station mode,
the ESP32 connects to an existing Wi-Fi network as a client. In access point mode, the ESP32
creates its own Wi-Fi network and allows other devices to join as clients. The ESP32 can also
operate in both modes simultaneously, creating a Wi-Fi repeater or bridge between two networks.

The dual-mode functionality of the ESP32 enables various use cases, such as:

e Wi-Fi Repeater: The ESP32 can extend the range of an existing Wi-Fi network by
connecting to it as a station and creating a new network as an access point. The ESP32
can also provide internet access to connected devices using NAT (Network Address
Translation) or routing.

e Wi-Fi Bridge: The ESP32 can connect two different Wi-Fi networks by operating as a
station in one network and as an access point in another network. The ESP32 can also
transfer data between the two networks using TCP/IP or UDP protocols.

e Wi-Fi Scanner: The ESP32 can scan nearby Wi-Fi networks using promiscuous mode,
allowing it to receive all packets on a particular channel. The ESP32 can also analyze
packets and extract information such as SSID, MAC address, RSSI, channel, encryption
type, etc.

e Wi-Fi Sniffer: The ESP32 can capture Wi-Fi traffic on a specific channel using
promiscuous mode. The ESP32 can also send captured packets to a PC or smartphone for
further analysis using tools like Wireshark.

ESP32 Security Protocols: Support for
WPA, WPA2, WPA3

The ESP32 supports various security protocols to protect Wi-Fi communication from unauthorized
access and attacks. The security protocols include:

e WEP: Wired Equivalent Privacy, a legacy encryption protocol that is insecure and not
recommended.

e WPA: Wi-Fi Protected Access, an enhanced encryption protocol that uses TKIP (Temporal
Key Integrity Protocol) or AES (Advanced Encryption Standard) algorithms.

e WPA2: Wi-Fi Protected Access 2, an improved encryption protocol that uses AES and
provides stronger security than WPA.



e WPA3: Wi-Fi Protected Access 3, a new encryption protocol offering stronger security and
privacy features than WPA2.

The ESP32 supports WPA, WPA2, and WPA3 in both station and access point modes. It can also
operate in mixed mode, allowing the ESP32 to accept connections from devices that support
different security protocols. For example, the ESP32 can create a Wi-Fi network supporting both
WPA2 and WPA3, enabling devices that support either protocol to join the network.

The ESP32 also supports Protected Management Frames (PMF), a feature that encrypts and
authenticates management frames, such as deauthentication, disassociation, and robust
management frames. PMF prevents attacks using forged or spoofed management frames to disrupt
Wi-Fi connections or perform man-in-the-middle attacks. PMF can be configured as optional,
required, or disabled in both station and access point modes.

The ESP32 supports Wi-Fi Enterprise, a secure authentication mechanism for enterprise wireless
networks. It uses a RADIUS server for user authentication before connecting to an access point. The
authentication process is based on 802.1X policies and comes with various Extended
Authentication Protocol (EAP) methods, such as TLS, TTLS, PEAP, and EAP-FAST. The ESP32 only
supports Wi-Fi Enterprise in station mode.

Configuring ESP32 as a Wi-Fi Station (STA)

The ESP32 can operate as a Wi-Fi station, meaning it can connect to an existing Wi-Fi network as a
client device. This mode is useful for accessing the internet or other network services. In this
section, we'll look at how to configure the ESP32 as a Wi-Fi station and manage Wi-Fi connection
events and system responses.

Connecting to an Existing Wi-Fi Network

#include <WiFi.h>
#define WIFI_SSID "my_wifi"
#define WIFI_PASS "my_password"

void setup() {
// Initialize serial monitor

Serial.begin(115200);

// Connect to Wi-Fi network

WiFi.begin(WIFI_SSID, WIFI_PASS);

// Wait until connected or timeout

uint8_t timeout = 30;



while (WiFi.status() '= WL_CONNECTED && timeout--) {
delay(1000);
Serial.print(".");

}

/I Check connection status
if (WiFi.status() == WL_CONNECTED) {
Serial.printin("Connected to Wi-Fi");
Serial.printIin("IP Address: " + WiFi.locallP().toString());
} else {

Serial.printin("Failed to connect to Wi-Fi");
}
}

void loop() {
// Do nothing
}

Managing Wi-Fi Connection Events and System Responses

The ESP32 can handle various Wi-Fi connection events and system responses using the WiFiEvent
class. This class allows the ESP32 to register callback functions for different types of events, such
as:

e WiFiEventStationModeConnected: This event occurs when the ESP32 successfully
connects to an Access Point (AP). The callback function receives a
WiFiEventStationModeConnected object containing information about the AP, such as SSID,
BSSID, and channel.

e WiFiEventStationModeDisconnected: This event occurs when the ESP32 disconnects
from the AP or fails to connect. The callback function receives a
WiFiEventStationModeDisconnected object containing information about the AP and the reason
for disconnection, such as AUTH_EXPIRE , NO_AP_FOUND , or HANDSHAKE_TIMEOUT .

e WiFiEventStationModeGotIP: This event occurs when the ESP32 obtains an IP address
from the DHCP server. The callback function receives a WiFiEventStationModeGotIP object
containing information about the IP address, subnet mask, and gateway.

o WiFiEventStationModeAuthModeChanged: This event occurs when the AP’s
authentication mode changes. The callback function receives a
WiFiEventStationModeAuthModeChanged oObject containing information about the old and new
authentication modes, such as WIFI AUTH OPEN , WIFI_ AUTH WPA PSK , or
WIFI_AUTH_WPA3_PSK .

e WiFiEventStationModeDHCPTimeout: This event occurs when the ESP32 fails to
obtain an IP address from the DHCP server within the specified time. The callback function
does not receive any parameters.



To use the WiFiEvent class, we need to follow this code:

#include <WiFi.h>
#define WIFI_SSID "my_wifi"
#define WIFI_PASS "my_password"

/I Callback function for WiFiEventStationModeConnected event

void onStationModeConnected(WiFiEventStationModeConnected info) {
Serial.printin("Connected to AP");
Serial.printIn("SSID: " + info.ssid);
Serial.printin("BSSID: " + info.bssid);

Serial.printin("Channel: " + String(info.channel));

/I Callback function for WiFiEventStationModeDisconnected event
void onStationModeDisconnected(WiFiEventStationModeDisconnected info) {
Serial.printin("Disconnected from AP");
Serial.printIn("SSID: " + info.ssid);
Serial.printin("BSSID: " + info.bssid);
Serial.printin("Reason: " + String(info.reason));

}

// Callback function for WiFiEventStationModeGotIP event
void onStationModeGotIP(WiFiEventStationModeGotIP info) {
Serial.printin("Obtained IP Address");
Serial.printin("IP: " + info.ip.toString());
Serial.printIn("Mask: " + info.mask.toString());

Serial.printin("Gateway: " + info.gw.toString());

// Callback function for WiFiEventStationModeAuthModeChanged event

void onStationModeAuthModeChanged(WiFiEventStationModeAuthModeChanged info) {
Serial.printin("Authentication mode changed");
Serial.printin("Old mode: " + String(info.oldMode));

Serial.printIn("New mode: " + String(info.newMode));

}

// Callback function for WiFiEventStationModeDHCPTimeout event
void onStationModeDHCPTimeout() {
Serial.printin("DHCP Timeout");



void setup() {
// Initialize serial monitor

Serial.begin(115200);

// Register event handlers

WiFi.onEvent(onStationModeConnected, SYSTEM_EVENT_STA_CONNECTED);
WiFi.onEvent(onStationModeDisconnected, SYSTEM_EVENT_STA_DISCONNECTED);
WiFi.onEvent(onStationModeGotIP, SYSTEM_EVENT_STA GOT _IP);
WiFi.onEvent(onStationModeAuthModeChanged, SYSTEM_EVENT_STA_AUTHMODE_CHANGE);
WiFi.onEvent(onStationModeDHCPTimeout, SYSTEM_EVENT_STA_DHCP_TIMEOUT);

// Connect to Wi-Fi network
WiFi.begin(WIFI_SSID, WIFI_PASS);
}

void loop() {
// Do nothing
}

Example Output:

Connected to AP

SSID: my_wifi

BSSID: 00:11:22:33:44:55
Channel: 6

Obtaining IP address
IP: 192.168.1.100
Mask: 255.255.255.0
Gateway: 192.168.1.1

Disconnected from AP
SSID: my_wifi

BSSID: 00:11:22:33:44:55
Reason: 200

Secure Storage and Management of Wi-Fi Credentials



The ESP32 can securely store and manage Wi-Fi credentials using the Preferences library. The
Preferences library allows the ESP32 to save and retrieve key-value pairs in the non-volatile
storage (NVS) partition. The Preferences library also supports encryption of stored data using the
AES-256 algorithm.

To use the Preferences library, follow the code below:

#include <WiFi.h>

#include <Preferences.h>

#define WIFI_SSID "my_wifi"
#define WIFI_PASS "my password"

// Create a Preferences object

Preferences preferences;

/] Define a 32-byte encryption key

uint8_t enc_key[32] = { 0x01, 0x02, 0x03, 0x04, 0x05, 0x06, 0x07, 0x08,
0x09, 0x0A, 0x0B, 0x0C, 0x0D, OxOE, 0xOF, 0x10,
0x11, 0x12, 0x13, 0x14, 0x15, 0x16, 0x17, 0x18,
0x19, 0x1A, 0x1B, 0x1C, 0x1D, Ox1E, Ox1F, 0x20 };

void setup()

{

// Initialize serial monitor

Serial.begin(115200);

// Open a namespace called "wifi"

preferences.begin("wifi", false); // false = read/write

// Enable encryption with the encryption key

preferences.setEncryptionKey(enc_key);

/] Store Wi-Fi SSID and password
preferences.putString("ssid", WIFI_SSID);
preferences.putString("pass”, WIFI_PASS);

// Close the namespace

preferences.end();



To retrieve the SSID and Wi-Fi password from the NVS partition using the getString method, you
can optionally enable encryption using the setEncryptionKey method. Here's an example:

// Define a 32-byte encryption key
uint8_tenc_key[32] = {/*... ¥/ };

void setup()
{
// Initialize serial monitor

Serial.begin(115200);

// Open a namespace called "wifi"

preferences.begin("wifi", true);

/I Enable encryption with the encryption key

preferences.setEncryptionKey(enc_key);

/l Retrieve Wi-Fi SSID and password
String ssid = preferences.getString("ssid", "");

String pass = preferences.getString("pass”, "");

// Close the namespace

preferences.end();

// Connect to the Wi-Fi network

WiFi.begin(ssid.c_str(), pass.c_str());

/l Wait until connected or timeout
uint8_t timeout = 30;
while (WiFi.status() '= WL_CONNECTED && timeout--)
{
delay(1000);
Serial.print(".");

/l Check connection status
if (WiFi.status() == WL_CONNECTED)
{
Serial.printin("Connected to Wi-Fi");
Serial.printIn("IP Address: " + WiFi.locallP().toString());



else

Serial.printin("Failed to connect to Wi-Fi");

void loop()

{
/I Do nothing

Configuring ESP32 as a Wi-Fi Access Point
(AP)

The ESP32 can also operate as a Wi-Fi access point, meaning it can create its own Wi-Fi network
and allow other devices to join as clients. This mode is useful for creating a local network without
an internet connection or router. In this section, we will look at how to set up the ESP32 as a Wi-Fi
access point and how to manage connected client devices and their data flow.

Procedure to Initialize a Local Wi-Fi Network

To initialize a local Wi-Fi network with the ESP32 as an access point, follow these steps:
#include <WiFi.h>

#define WIFI_SSID "ESP32-Access-Point"
#define WIFI_PASS "123456789"

// Set the web server port to 80

WiFiServer server(80);

void setup()

{

// Initialize serial monitor

Serial.begin(115200);

// Set Wi-Fi mode to AP
WiFi.mode(WIFI_AP);



// Create Wi-Fi network
/I WiFi.softAP(ssid, password, channel, hidden, max_connection)

WiFi.softAP(WIFI_SSID, WIFI_PASS, 1, false, 4);

// Print the IP address of the AP
Serial.print("AP IP Address: ");
Serial.printin(WiFi.softAPIP());

// Start web server

server.begin();

void loop()
{
/I Listen for incoming clients
WiFiClient client = server.available();
if (client)
{
// If a new client connects, print a message

Serial.printin("New client.");

/I Create a String to hold incoming data

String request = "";

// Loop while the client is connected
while (client.connected())
{
// If there are bytes to read from the client
if (client.available())
{
// Read a byte and add it to the request
char ¢ = client.read();

request += ¢;

/I If the byte is a newline character
if (c =="n")
{
// If the request is empty, the client has sent an empty line

// This is the end of the HTTP request, so send a response



if (request.length() == 0)

{
/I HTTP header always starts with response code and content type
// Then a blank line
client.printIn("HTTP/1.1 200 OK");
client.printin("Content-type:text/plain®);

client.printin();

// Send the response body
client.printin("Hello from ESP32 AP!");

// Break out of the loop

break;

else

// Clear the request

request = "";

// Close the connection
client.stop();

Serial.printin("Client disconnected.");

The ESP32 access point can be configured with various parameters, such as SSID, password,
channel, SSID visibility, and maximum number of connections. These parameters can be passed as
arguments to the wiFi.softAP method, as shown below:

/Il WiFi.softAP(ssid, password, channel, hidden, max_connection)

// Create an open Wi-Fi network with the default channel (1), SSID visibility (true), and maximum connections (4)

WiFi.softAP("ESP32-AP", NULL);

// Create a secure Wi-Fi network with the default channel (1), SSID visibility (true), and maximum connections (4)

WiFi.softAP("ESP32-AP", "123456789");



// Create a secure Wi-Fi network with a custom channel (6), SSID visibility (true), and maximum connections (4)

WiFi.softAP("ESP32-AP", "123456789", 6);

// Create a secure Wi-Fi network with a custom channel (6), SSID visibility (false), and maximum connections (4)

WiFi.softAP("ESP32-AP", "123456789", 6, false);

// Create a secure Wi-Fi network with a custom channel (6), SSID visibility (false), and maximum connections (2)

WiFi.softAP("ESP32-AP", "123456789", 6, false, 2);

e SSID is the name of the Wi-Fi network and can be up to 31 characters long.

e Password is the security key to join the network and must be at least 8 characters long.
If the password is set to NULL , the network will be open, and anyone can join without a
password.

e Channel is the frequency band used by the Wi-Fi network and can range from 1 to 13.

e The hidden parameter is a boolean value that determines whether the SSID is
broadcasted. If set to true , the network will not appear in Wi-Fi scans, and clients will
need to know the SSID to join.

e The max_connection parameter is the maximum number of clients that can connect to
the network simultaneously and can range from 1 to 4.

HTTP/HTTPS Introduction

Overview of HTTP and HTTPS

e HTTP (Hypertext Transfer Protocol) is a set of rules for transferring data over the internet.
HTTP is the most commonly used protocol for web browsing, allowing clients (such as web
browsers) to request and receive web pages, images, videos, and other resources from a
server. HTTP is based on a request-response model, where the client sends a request
to the server, and the server responds with the requested resource or an error code. HTTP
is a stateless protocol, meaning that each request and response is independent and
does not remember previous interactions.

e HTTPS (Hypertext Transfer Protocol Secure) is an extension of HTTP that adds an
additional layer of security. HTTPS uses Transport Layer Security (TLS) to encrypt and
authenticate data exchanged between the client and server. HTTPS prevents
eavesdropping, tampering, or modification of data, ensuring the privacy and integrity of
communication. HTTPS also provides identity verification using digital certificates
issued by trusted authorities. HTTPS is a stateful protocol, meaning that it maintains a
secure connection between the client and server throughout the session.



Importance in loT Communication

Internet of Things (loT) refers to a network of physical devices, such as sensors, actuators,
cameras, and microcontrollers, that are connected to the internet. HTTP/HTTPS is important for loT
communication because it allows IoT devices to interact with web servers and cloud platforms
(e.g., Google Cloud, AWS, Microsoft Azure). HTTP/HTTPS enables loT devices to send data to the
cloud, receive commands or updates, or access web APIs.

Differences and Transition from HTTP to
HTTPS

HTTP and HTTPS have several key differences:

e Port: HTTP uses port 80, while HTTPS uses port 443. This allows HTTP and HTTPS to
coexist on the same network without interference.

e Data Security: HTTP transmits data in plaintext, while HTTPS encrypts data using TLS,
protecting it from unauthorized access.

o Authentication: HTTP does not verify server identity, while HTTPS uses digital
certificates for authentication.

o Attack Protection: HTTPS protects against attacks such as man-in-the-middle, phishing,
and spoofing.

o Performance: HTTP is faster because it does not require encryption or authentication,
while HTTPS has additional overhead.

Many websites have switched to HTTPS for better security and privacy. Some web browsers also
mark HTTP sites as not secure to warn users.

Basics of Web Communication

Request-Response Model

The request-response model describes how web communication works. It is based on the idea that
a client (e.qg., web browser) sends a request to a server (e.g., web server), and the server responds.

1. Request: Consists of:
e Request Line: Specifies the method, URL, and HTTP version.
e Request Headers: Additional information about the request (e.g., host, content

type).



o Request Body: Data that the client wants to send to the server (e.g., form inputs,

files).
2. Response: Consists of:

e Status Line: Specifies the HTTP version, status code, and status message.

e Response Headers: Additional information about the response (e.g., content type,
content length).

e Response Body: Data that the server sends back to the client (e.g., web pages,
images).

HTTP Methods: GET, POST, PUT, DELETE,
and Use Cases

e GET: Requests a resource from the server. It is safe and idempotent. Example: GET
/index.html .

e POST: Sends data to the server to create or update a resource. It is not safe or
idempotent. Example: POST /login .

e PUT: Replaces a resource on the server. It is not safe, but it is idempotent. Example: pPUT
[profile .

e DELETE: Deletes a resource from the server. It is not safe or idempotent. Example:
DELETE /post/123 .

Status Codes and Their Meaning

Status codes are numbers that indicate the result of a request. They are grouped as follows:

e 1xx: Informational. Indicates the request has been received and is being processed.

e 2xX: Success. Indicates the request was successfully completed (e.g., 200 0K ).

e 3xx: Redirection. Indicates the request needs to be redirected to another URL (e.g., 301
Moved Permanently ).

e 4xx: Client Error. Indicates the request is invalid or cannot be fulfilled (e.g., 404 Not Found

).

e 5xx: Server Error. Indicates the server encountered an error (e.g., 500 Internal Server Error ).

HTTP Communication with ESP32

Creating a Basic HTTP Client

To use the ESP32 as an HTTP client, we need to include the following libraries:



#include <WiFi.h>
#include <HTTPClient.h>

The WiFi.h library allows us to connect to a Wi-Fi network, and the HTTPClient.h library allows us to
make HTTP requests.

We also need to declare the Wi-Fi SSID and password, as well as the hostname and pathname of
the server we want to communicate with. For example:

const char* WIFI_SSID = "YOUR_WIFI_SSID"; // change this

const char* WIFI_PASSWORD = "YOUR_WIFI_PASSWORD"; // change this
String HOST_NAME = "http://YOUR_DOMAIN.com"; // change this

String PATH_NAME = "/products/arduino"; // change this

In the setup() function, we need to initialize the serial monitor and connect to the Wi-Fi network.
We can use the WiFi.begin() and WiFi.status() functions to do this. For example:

void setup() {
Serial.begin(115200);
WiFi.begin(WIFI_SSID, WIFI_PASSWORD);
Serial.print("Connecting to Wi-Fi");
while (WiFi.status() != WL_CONNECTED) {
Serial.print(".");
delay(1000);
}
Serial.printIn();
Serial.printin("Connected to Wi-Fi");
Serial.printin("IP Address: ");
Serial.printin(WiFi.locallP());

In the loop() function, we need to create an HTTP client object and use the begin() method to
specify the URL we want to request. For example:

void loop() {
HTTPClient http;
http.begin(HOST_NAME + PATH_NAME);
// further code will follow

}



Sending an HTTP GET Request to an API

To send an HTTP GET request to an API, we use the GET() method of the HTTP client object. This
method returns an integer representing the status code of the response. For example:

int httpCode = http.GET();

We can use the httpCode variable to check if the request was successful. If httpCode is positive, it
means the server responded with a valid status code. If httpCode is negative, it means there was
an error in the request. For example:

if (httpCode > 0) {
Serial.print("HTTP GET request completed, code: ");
Serial.printIn(httpCode);

} else {
Serial.print("HTTP GET request failed, error: ");
Serial.printin(http.errorToString(httpCode));

}

If the request is successful, we can use the getString() method of the HTTP client object to get the
response content as a string. This method returns a string containing the data sent by the server.
For example:

if (httpCode == HTTP_CODE_OK) {
String payload = http.getString();
Serial.printin("HTTP Response: ");
Serial.printin(payload);

}

The response content may contain various types of data, depending on the API. For example, it
could contain JSON, XML, HTML, plain text, or binary data. We need to parse the response content
according to the data type we expect. For instance, if the response contains JSON data, we need to
use a JSON parsing library to extract the values we need.

Sending an HTTP POST Request

To send an HTTP POST request to the server, we use the POST() method of the HTTP client object.
This method takes a string as an argument, representing the data we want to send in the request
body. For example:



String data = "temperature=26&humidity=70"; // example data
int httpCode = http.POST(data);

We can use the same httpCode variable to check if the request was successful, as we did with the
GET request. If the request is successful, we can also use the same getString() method to get the
response content as a string, just like we did with the GET request.

The data we send in the request body can be in various formats, depending on the server. For
example, it could be in query string format, JSON format, XML format, or binary format. We need to
format the data according to the server’'s expectations. We may also need to set the appropriate
content type header for the request, using the addHeader() method of the HTTP client object. For
example:

http.addHeader("Content-Type", "application/json"); // example header
String data = "{\"temperature\":26,\"humidity\":70}"; // example data in JSON format
int httpCode = http.POST(data);

Parsing JSON Responses and Error
Handling

To parse JSON responses, we need to include the following library:

#include <Arduinojson.h>

The Arduinojson.h library allows us to parse and generate JSON data. We can use the
deserializeJson() function to parse a JSON string into a JSON object. For example:

String payload = http.getString(); // get the response content as a string
StaticJsonDocument<200> doc; // create a JSON document object with a capacity of 200 bytes

deserializeJson(doc, payload); // parse the JSON string into the JSON document object

We can use the doc variable to access values within the JSON object, using the [] operator. For
example, if the JSON object contains a key called "temperature" and a key called "humidity," we
can retrieve their values as follows:

int temperature = doc["temperature"]; // get the value of "temperature" as an integer
int humidity = doc["humidity"]; // get the value of "humidity" as an integer
Serial.print("Temperature: ");

Serial.printin(temperature);

Serial.print("Humidity: ");



Serial.printin(humidity);

We can also use the doc variable to check if the JSON object contains a specific key, using the
containsKey() method. For example, if we want to check if the JSON object contains a key called
“error," we can do as follows:

if (doc.containsKey("error")) {

Serial.printin("Error in JSON response");

}

We can also use the doc variable to check if JSON parsing was successful, using the isNull()
method. For example, if JSON parsing fails, the doc variable will be null, and we can handle it as
follows:

if (doc.isNull()) {

Serial.printin("Invalid JSON response");

}

Code Snippets for GET and POST Requests

The following code snippets show how to make GET and POST requests using the ESP32 as an HTTP
client. This code assumes that the server is running on the same network as the ESP32, with a
server IP address of 192.168.1.100 . It also assumes that the server responds with JSON data
containing keys "temperature" and "humidity".

GET Request

#include <WiFi.h>
#include <HTTPClient.h>

#include <Arduinojson.h>

const char* WIFI_SSID = "YOUR_WIFI_SSID"; // change this

const char* WIFI_PASSWORD = "YOUR_WIFI_PASSWORD"; // change this
String HOST_NAME = "http://192.168.1.100"; // change this

String PATH_NAME = "/get_data";

void setup() {
Serial.begin(115200);
WiFi.begin(WIFI_SSID, WIFI_PASSWORD);
Serial.print("Connecting to Wi-Fi");
while (WiFi.status() '= WL_CONNECTED) {



Serial.print(".");

delay(1000);
}
Serial.printin();
Serial.printin("Connected to Wi-Fi");
Serial.printIn("IP Address: ");
Serial.printin(WiFi.locallP());

void loop() {
HTTPClient http;
http.begin(HOST_NAME + PATH_NAME);

int httpCode = http.GET();

if (httpCode > 0) {
Serial.print("HTTP GET request completed, code: ");
Serial.printin(httpCode);

if (httpCode == HTTP_CODE_OK) {
String payload = http.getString();
Serial.printin("HTTP Response: ");
Serial.printin(payload);

StaticJsonDocument<200> doc;

deserializeJson(doc, payload);

if (doc.isNull()) {
Serial.printin("Invalid JSON response");
} else {
if (doc.containsKey("error")) {
Serial.printin("Error in JSON response");
} else {
int temperature = doc["temperature"];
int humidity = doc["humidity"];
Serial.print("Temperature: ");
Serial.printin(temperature);
Serial.print("Humidity: ");
Serial.printin(humidity);



}

} else {
Serial.print("HTTP GET request failed, error: ");
Serial.printin(http.errorToString(httpCode));

}

http.end();
delay(5000);

POST Request

The following code demonstrates how to make a POST request using the ESP32 as an HTTP client.
This code assumes that the server is running on the same network as the ESP32, with the server IP
address 192.168.1.100 . The server is expected to respond with JSON data containing the keys
"temperature" and "humidity".

#include <WiFi.h>
#include <HTTPClient.h>

#include <Arduinojson.h>

const char* WIFI_SSID = "YOUR_WIFI_SSID"; // change this

const char* WIFI_PASSWORD = "YOUR_WIFI_PASSWORD"; // change this
String HOST_NAME = "http://192.168.1.100"; // change this

String PATH_NAME = "/post_data";

void setup() {
Serial.begin(115200);
WiFi.begin(WIFI_SSID, WIFI_PASSWORD);
Serial.print("Connecting to Wi-Fi");
while (WiFi.status() '= WL_CONNECTED) {
Serial.print(".");
delay(1000);
}
Serial.printin();
Serial.printIn("Connected to Wi-Fi");
Serial.printin("IP Address: ");
Serial.printIn(WiFi.locallP());



void loop() {
HTTPClient http;
http.begin(HOST_NAME + PATH_NAME);
http.addHeader("Content-Type", "application/json"); // set content-type to JSON

StaticJsonDocument<100> doc; // create a JSON document with a 100-byte capacity
doc["temperature"] = 26; // set the "temperature" key value to 26

doc["humidity"] = 70; // set the "humidity" key value to 70

String data; // create a string to store JSON data

serializeJson(doc, data); // serialize the JSON document into the string

int httpCode = http.POST(data); // send POST request with JSON data
if (httpCode > 0) {
Serial.print("HTTP POST request done, code: ");
Serial.printin(httpCode);

if (httpCode == HTTP_CODE_OK) {
String payload = http.getString();
Serial.printin("HTTP Response: ");
Serial.printin(payload);

StaticJsonDocument<200> doc;

deserializeJson(doc, payload);

if (doc.isNull()) {
Serial.printin("Invalid JSON response");
} else {
if (doc.containsKey("error")) {
Serial.printIn("Error in JSON response");
} else {
int temperature = doc["temperature"];
int humidity = doc["humidity"];
Serial.print("Temperature: ");
Serial.printin(temperature);
Serial.print("Humidity: ");
Serial.printin(humidity);



} else {
Serial.print("HTTP POST request failed, error: ");
Serial.printin(http.errorToString(httpCode));

}

http.end();
delay(5000);

Creating an HTTP Server with ESP32

Configuring ESP32 as an HTTP Server

To use ESP32 as an HTTP server, we need to include the following libraries:

#include <WiFi.h>

#include <WebServer.h>

The WiFi.h library allows us to connect to a Wi-Fi network, and the WebServer.h library enables us
to create and handle HTTP requests.

We also need to declare the Wi-Fi SSID, Wi-Fi password, and the port number for the web server.
For example:

const char* WIFI_SSID = "YOUR_WIFI_SSID"; // change this
const char* WIFI_PASSWORD = "YOUR_WIFI_PASSWORD"; // change this
const int SERVER_PORT = 80; // default port for HTTP

In the setup() function, we need to initialize the serial monitor and connect to the Wi-Fi network.
We can use the WiFi.begin() and WiFi.status() functions to do this. For example:

void setup() {
Serial.begin(115200);
Serial.print("Connecting to ");
Serial.printin(WIFI_SSID);
WiFi.begin(WIFI_SSID, WIFI_PASSWORD);

while (WiFi.status() '= WL_CONNECTED) {
delay(500);

Serial.print(".");



Serial.printin();
Serial.printin("Connected to Wi-Fi");
Serial.printIin("IP Address: ");
Serial.printin(WiFi.locallP());

Next, we need to create a web server object and pass the port number as an argument. For
example:

WebServer server(SERVER_PORT); // create a web server on port 80

Then, we define routes and handlers for the web server. A route is a path or URL that the client
requests from the server. A handler is a function that executes when a specific route is requested.
We can use the on() method from the web server object to define routes and handlers. For
example:

server.on("/", handleRoot); // calls the 'handleRoot' function when the root route is requested

The handleRoot function is a custom function that we need to define later. It will handle requests
for the root route, which is the default route when we access the web server.

Finally, we start the web server using the begin() method from the web server object. For example:

server.begin(); // start the web server

Serial.printIn("Web server started");

To define routes and handlers for the web server, we need to write custom functions for each
route. These functions should have the following structure:

void handleRoute() {
/I code to handle the request for the route

}

The handleRoute function must have the same name as the one we pass to the on() method. For
example, if we define a route like this:

server.on("/about", handleAbout);

We need to write a function like this:



void handleAbout() {
/I code to handle the request for the /about route

}

Within functions, we can use various methods and properties of the web server object to handle
requests. Some of the most useful methods and properties are:

e server.method() : This method returns the HTTP method of the request, such as GET,
POST, PUT, or DELETE. We can use this method to check the type of request made by the
client and respond accordingly.

e server.arg(name) : This method returns the value of a query parameter or form field in the
request with the given name. For example, if the request URL is
/login?username=alice&password=1234 , we can retrieve the values of the username and
password parameters like this:

String username = server.arg("username"); // username = "alice"

String password = server.arg("password"); // password = "1234"

e server.send(code, type, content) : This method sends a response to the client with a status
code, content type, and content. For example, if we want to send a plain text response
with a 200 (OK) code, we can do this:

server.send(200, "text/plain", "Hello, world!");

e server.sendHeader(name, value) : This method sends a custom header in the response with
a name and value. For example, if we want to set a cookie for the client, we can do this:

server.sendHeader("Set-Cookie", "user=alice");

e server.client() : This property returns a reference to the client object connected to the
server. We can use this object to access low-level information about the client, such as IP
address, MAC address, or port number. For example, if we want to get the client’s IP
address, we can do this:

IPAddress clientlP = server.client().remotelP(); // get the IP address of the client

To serve HTML and CSS content from the ESP32, we need to write HTML and CSS code as a string
in our sketch. For example, we can write a simple HTML code like this:

String HTML = "<!DOCTYPE htmI>"
"<htmI>"
"<head>"
"<style>"
"h1l {color: blue;}"

"</style>"



"</head>"
"<body>"
"<hl>Hello, world!</h1>"
"</body>"

"</html>";

Then, we can send the HTML code as a response to the client using the server.send() method. We
need to specify the content type as "text/html" to inform the browser how to interpret the content.
For example, we can write a function to handle the root route like this:

void handleRoot() {
server.send(200, "text/html", HTML); // send the HTML code as a response

}

We can also use variables or expressions within our HTML code to make it dynamic. For example,
we can use the millis() function to display the current time on the web page. We can do this by
combining the HTML code with the millis() function using the + operator. For example:

String HTML = "<!DOCTYPE htmI>"
"<html>"
"<head>"
"<style>"
"h1l {color: blue;}"
"</style>"
"</head>"
"<body>"
"<hl>Hello, world!</h1>"
"<p>The current time is " + String(millis()) + " milliseconds.</p>"
"</body>"

"</html>";

Implementing HTTPS with SSL/TLS

Explanation of SSL/TLS Encryption

SSL stands for Secure Sockets Layer, and TLS stands for Transport Layer Security. Both are
cryptographic protocols that provide encryption and authentication for data transmitted over the
internet. They are commonly used to secure web communications, like HTTPS, as well as other
protocols, such as SMTP, FTP, and MQTT.



SSL/TLS encryption works by establishing a secure connection between a client (such as a web
browser) and a server (such as a web server) through a process called an SSL/TLS handshake. The
handshake involves the following steps:

1. The client sends a ClientHello message to the server, indicating the SSL/TLS version,
supported cipher suites, and a random number.

2. The server responds with a ServerHello message, selecting the SSL/TLS version, cipher
suite, and another random number. The server also sends its certificate, which contains
its public key and identity information, signed by a trusted authority.

3. The client verifies the server's certificate and, optionally, sends its own certificate if the
server requests it. The client also generates a premaster secret, which is a random
number, and encrypts it with the server's public key. The client then sends the encrypted
premaster secret to the server.

4. The server decrypts the premaster secret using its private key. Both the client and server
use the premaster secret and random numbers to generate a master secret, which is a
shared secret key. They also use the master secret to generate a session key, which is a
symmetric key used to encrypt and decrypt data.

5. The client sends a Finished message to the server, containing a hash of previous
messages, encrypted with the session key. The server does the same, sending a Finished
message to the client.

6. The client and server can now exchange data securely, using the session key to encrypt
and decrypt data.

Using WiFiClientSecure.h for Secure Server
Communication

To simplify this explanation, using WiFiClientSecure is essentially the same as using a regular
WiFiClient . However, there is one key difference to note. Before you initiate a connection to the
target server, you need to define the server's certificate in a constant variable, for example, named
server_cert . After that, you can run client.setCACert(server _cert) on the client. Once this step is
completed, you will use WwiFiClientSecure in a similar way to how you would use a regular WiFiClient .
This means all operations you perform afterward—such as sending and receiving data—will be
done over a secure connection, as it is authenticated with the correct certificate.

Introduction to MQTT and MQTTS

Overview of MQTT in loT

MQTT (Message Queuing Telemetry Transport) is a lightweight publish/subscribe messaging
protocol designed for low-bandwidth, high-latency, and unreliable networks. It is widely used in the



Internet of Things (IoT) to enable communication between devices and applications.

MQTT operates on a broker and client principle. The broker is a central server that manages
message distribution among clients. Clients are devices or applications connected to the broker
and exchange messages using topics. A topic is a hierarchical string that identifies the content and
scope of a message. For example, home/temperature is a topic representing temperature data for a
home.

Clients can publish messages to a topic or subscribe to a topic to receive messages from the
broker. The broker ensures that messages are delivered to subscribed clients according to the
Quality of Service (QoS) level specified by the publisher. The QoS level indicates message
delivery guarantees. MQTT has three QoS levels:

1. QoS 0: At most once delivery. Messages are delivered at most once or not at all. This QoS
level is the fastest and simplest but does not provide reliability. Suitable for scenarios
where occasional message loss is acceptable, such as sensor data or telemetry.

2. QoS 1: At least once delivery. Messages are delivered at least once, but they may be
delivered more than once. This level ensures messages are received by the broker and
subscribed clients but may introduce duplicate messages. Suitable for scenarios where
message loss is unacceptable, but duplicates can be tolerated or filtered, such as alerts or
notifications.

3. QoS 2: Exactly once delivery. Messages are delivered exactly once. This is the most
reliable and complex level but also introduces more overhead and latency. Suitable for
scenarios where both message loss and duplication are unacceptable, such as financial
transactions or commands.

MQTT is a simple and flexible protocol that can be implemented on various platforms and devices.
It has many advantages for loT applications, such as:

1. Low overhead: MQTT packet headers are only 2 bytes, which minimizes network
bandwidth and resource consumption.

2. Scalability: Brokers can handle millions of simultaneous connections and messages from
clients, allowing large-scale 10T deployments.

3. Security: MQTT supports Transport Layer Security (TLS) encryption and
authentication, which protects transmitted data from eavesdropping and tampering.

4. Interoperability: MQTT is based on the standard TCP/IP stack, making it compatible
with any network infrastructure and device. It also supports various data formats, such as
JSON, XML, or binary, making integration with different applications and services easy.

Advantages of MQTT for ESP32 Devices

Using MQTT with ESP32 devices has several advantages, such as:

e Easy integration: ESP32 natively supports the MQTT protocol, as it includes a built-in
MQTT client library (ESP-MQTT) that can be used with the Arduino IDE or ESP-IDF



framework. The ESP-MQTT library provides a simple and convenient way to connect,
publish, and subscribe to MQTT brokers and topics, without requiring additional libraries or
dependencies.

e Low power consumption: The ESP32 has various power modes, such as active, light
sleep, deep sleep, and hibernation, which allow for power consumption adjustments based
on application needs. Using MQTT with ESP32 devices can further reduce power
consumption, as MQTT is a lightweight protocol that minimizes network traffic and CPU
usage. Moreover, MQTT supports a keep-alive mechanism, allowing devices to maintain
a connection with the broker without sending or receiving data until a message is
available or a timeout occurs. This allows the device to save power by entering low-power
mode when inactive and only waking when needed.

e Reliable communication: Using MQTT with ESP32 devices can improve communication
reliability, as MQTT supports various QoS levels to ensure message delivery according to
application requirements. Additionally, MQTT supports Last Will and Testament (LWT)
functionality, allowing a device to send a predefined message to the broker in case of an
unexpected disconnection, such as power failure or network disruption. This allows the
broker and other clients to be informed of the device’s status and take appropriate action.

Comparing MQTT and MQTTS
(MQTT over SSL/TLS)

MQTT is a protocol that operates on the TCP/IP stack, providing reliable and ordered data delivery.
However, TCP/IP does not offer security or encryption for data, making it vulnerable to various
attacks, such as:

e Eavesdropping: An attacker can intercept and read transmitted data, potentially
exposing sensitive or confidential information, such as passwords, personal data, or
commands.

e Tampering: An attacker can modify or inject data being transmitted, potentially altering
the intended communication’s behavior or outcomes, such as changing sensor readings,
triggering false alarms, or executing malicious commands.

e Spoofing: An attacker can impersonate another device or application involved in the
communication, potentially deceiving or misleading the recipient, such as sending fake
messages, requesting unauthorized access, or stealing data.

To protect data from these attacks, MQTT can be used with SSL/TLS, a protocol that provides
security and encryption for data. SSL/TLS stands for Secure Sockets Layer/Transport Layer
Security and is widely used to secure internet communications. SSL/TLS works by establishing a
secure channel between the sender and receiver, which involves the following steps:

e Handshake: The sender and receiver exchange information and agree on parameters for
the secure channel, such as protocol version, cipher suite, and key exchange method. The



sender and receiver also verify each other’s identity using certificates, which are digital
documents containing the owner’s public key and identity information and signed by a
trusted authority. This step ensures the authenticity and integrity of the communication
parties.

e Encryption: The sender and receiver generate a shared secret key using the key
exchange method agreed upon during the handshake, such as Diffie-Hellman or RSA.
The sender and receiver use this key to encrypt and decrypt transmitted data over the
secure channel, using the cipher suite agreed upon during the handshake, such as AES or
ChaCha20. This step ensures the confidentiality and integrity of the data.

o Termination: The sender and receiver close the secure channel and release the
resources, such as keys and certificates, used for communication. This step ensures the
security and efficiency of the communication.

MQTT over SSL/TLS, also known as MQTTS, is a variant of MQTT that uses SSL/TLS to secure data.
MQTTS has the same features and functionality as MQTT, except it uses a different port number
(8883 instead of 1883) and a different URI scheme ( mqtts instead of mqtt ) to indicate SSL/TLS
usage. MQTTS offers several advantages over MQTT, such as:

e Data protection: MQTTS protects data from eavesdropping, tampering, and spoofing by
using SSL/TLS encryption and authentication. This ensures that only the intended recipient
can read, modify, or impersonate the communication.

e Compliance: MQTTS helps meet legal, regulatory, or industry requirements for data
protection, privacy, or cybersecurity, such as GDPR in Europe or HIPAA in the United
States.

e Trust: MQTTS increases trust and confidence between the communication parties by
verifying each other’s identity using certificates, which proves that they are who they
claim to be and that they are authorized to participate in the communication.

Basics of MQTT Protocol

Topics

A topic is a hierarchical string that identifies the content and scope of a message. Topics are used
by the broker to filter and distribute messages among clients. A topic consists of one or more topic
levels, separated by forward slashes (/). For example, home/temperature is a topic with two levels:
home and temperature .

Topics are case-sensitive and can contain UTF-8 encoded characters, except:

e Wildcard characters: + and #
e Control characters: U+0000 to U+001F and U+007F
e Space character: U+0020



Wildcard characters are used to create topic filters, allowing clients to subscribe to multiple topics
with a single subscription. There are two types of wildcards:

e Single-level wildcard ( + ): Matches any single topic level. For example, home/+
matches home/temperature , home/humidity , home/light , etc.

e Multi-level wildcard ( # ): Matches the specified level and all following levels. For
example, home/# matches home/temperature , home/humidity , home/light ,
home/temperature/average , etc.

Wildcards can only be used in topic filters, not in topic names. Topic filters must follow these rules:

e The multi-level wildcard ( # ) must be the last character in the topic filter and be preceded
by a forward slash (/) or be the only character in the filter. For example, home/# and #
are valid, but home/#/light and home# are not.

e The single-level wildcard ( + ) can be used at any level in the filter and must be
surrounded by forward slashes (/) or be the first or last character in the filter. For
example, +/temperature , home/+ , and +/+/light are valid, but home+ and +home are not.

Broker

The broker is a central server that manages MQTT communication among clients. It is responsible
for:

Establishing and maintaining connections with clients
Receiving and storing messages from publishers

Filtering and sending messages to subscribers

Handling QoS levels, session persistence, and authentication

Brokers can be hosted on cloud platforms, such as AWS loT Core, Azure loT Hub, or Google Cloud
loT Core, or on local machines, such as a Raspberry Pi, using MQTT broker software like Mosquitto,
EMQ X, or HiveMQ.

Clients

A client is a device or application that connects to a broker and exchanges messages using topics.
Clients can be publishers, subscribers, or both. Publishers are clients that publish messages to
topics, while subscribers are clients that subscribe to topics to receive messages from the broker.
Clients can publish or subscribe to multiple topics simultaneously.

Clients can use various MQTT client libraries or tools to connect to the broker and perform MQTT
operations, such as:

e Paho: An open-source set of MQTT client libraries for various programming languages,
such as Python, Java, C, C++, JavaScript, etc.



e MQTT.fx: A graphical MQTT client tool that allows users to connect, publish, and
subscribe to MQTT brokers and topics and monitor message exchanges.

e Mosquitto: A command-line MQTT client tool that allows users to connect, publish, and
subscribe to MQTT brokers and topics and perform various MQTT operations.

Publish/Subscribe Mechanism

MQTT uses a publish/subscribe mechanism to enable communication between clients and the
broker. The publish/subscribe mechanism works as follows:

e The publisher client publishes a message to a topic, specifying the QoS level and retain
flag. A message consists of a fixed header, a variable header, and a payload. The fixed
header contains the message type, QoS level, retain flag, and remaining length. The
variable header contains the topic name and packet identifier. The payload contains the
application data.

e The broker receives the message and stores it according to the QoS level and retain flag.
The broker also checks other clients' subscriptions to determine which clients are
interested in the message based on the topic name and topic filter.

e The broker sends the message to subscribing clients based on the QoS level and retain
flag. The broker and clients exchange acknowledgments to ensure message delivery.

Quality of Service (QoS) Levels: O, 1, and
2

e QoS 0: The lowest and fastest QoS level, but provides no reliability. The publisher sends
the message only once to the broker without waiting for any acknowledgment. The broker
sends the message only once to the subscriber, without waiting for acknowledgment.
Messages may be lost or duplicated due to network failures or congestion.

e QoS 1: The intermediate QoS level, ensuring the message is delivered at least once, but
may be delivered more than once. The publisher sends the message to the broker with a
packet identifier and waits for a PUBACK (publish acknowledgment) from the broker. If the
publisher doesn’t receive PUBACK within a certain time, it resends the message with the
same packet identifier. The broker sends the message to the subscriber with the same
packet identifier and waits for PUBACK from the subscriber. If the broker doesn’t receive
PUBACK within a certain time, it resends the message with the same packet identifier.

e QoS 2: The highest and most reliable QoS level, ensuring the message is delivered
exactly once. The publisher and subscriber exchange four messages to complete the
delivery. The publisher sends the message to the broker with a packet identifier and waits
for PUBREC (publish received) from the broker. The publisher then sends PUBREL (publish
release) to the broker with the same packet identifier and waits for PUBCOMP (publish
complete) from the broker. The broker sends the message to the subscriber with the same
packet identifier and waits for PUBREC from the subscriber. The broker then sends



PUBREL to the subscriber with the same packet identifier and waits for PUBCOMP from the
subscriber.

Retained Messages

A retained message is a message stored by the broker for a topic and delivered to new subscribers
when they subscribe to that topic. A publisher can mark a message as retained by setting the
retain flag to 1 in the fixed header. The broker will store the last retained message for each topic
and replace it with a new one if the publisher publishes another retained message to the same
topic. A publisher can also delete the retained message by publishing a message with a null
payload and retain flag set to 1 to the same topic.

Retained messages are useful for providing the latest status or information about a topic to new
subscribers without waiting for the publisher to publish a new message.

Last Will

The last will is a message sent by the broker on behalf of a client if the client disconnects
unexpectedly. A client can specify a last will message when connecting to the broker by providing
the topic, payload, QoS level, and retain flag of the message. The broker will store the last will
message until the client disconnects normally or the keep-alive interval expires. If the client
disconnects abnormally, the broker publishes the last will message to the topic and delivers it to
subscribers according to the QoS level and retain flag.

The last will message is useful for notifying other clients about the status or reason for the client’s
disconnection and for taking appropriate action.

MQTT Communication with ESP32

Connecting to the MQTT Broker

To communicate with an MQTT broker, ESP32 needs to use an MQTT client library compatible with
the Arduino IDE. One of the most popular and easy-to-use libraries is the PubSubClient library by
Nick O'Leary. This library provides a simple and convenient way to connect, publish, and subscribe
to MQTT brokers and topics without additional libraries or dependencies.

To install the PubSubClient library, follow these steps:

Open Arduino IDE and go to Sketch > Include Library > Manage Libraries
Search for "PubSubClient" and select the latest version

Click "Install" and wait for the installation to complete

Close the Library Manager window

P wWwhH



Code Example

// Include Wi-Fi and MQTT libraries
#include <WiFi.h>
#include <PubSubClient.h>

// Define Wi-Fi and MQTT credentials
const char* ssid = "your_wifi_ssid";
const char* password = "your_wifi_password";

const char* mqtt_server = "your_mqtt_broker_address";

// Create Wi-Fi client object
WiFiClient wifiClient;

/] Create PubSubClient object
PubSubClient mqttClient(wifiClient);

/I Connect to Wi-Fi network
void setup_wifi() {
Serial.print("Connecting to ");

Serial.printin(ssid);

// Connect to Wi-Fi network

WiFi.begin(ssid, password);

// Wait for connection to establish

while (WiFi.status() '= WL_CONNECTED) {
Serial.print(".");
delay(1000);

Serial.printin("");
Serial.printIn("WiFi connected");
Serial.print("IP Address: ");
Serial.printin(WiFi.locallP());

/I Connect to MQTT broker
void reconnect() {
while (!mgttClient.connected()) {
Serial.print("Attempting MQTT connection...");



String clientld = "ESP32Client-";
clientld += String(random(0xffff), HEX);

// Try connecting to the broker

if (mqgttClient.connect(clientld.c_str())) {
Serial.printin("connected");
mqttClient.subscribe("esp32/output");

} else {
Serial.print("failed, rc=");
Serial.print(mqttClient.state());
Serial.printin(" try again in 5 seconds");

delay(5000);

// Setup function runs once when ESP32 starts
void setup() {
Serial.begin(115200);
setup_wifi();
maqttClient.setServer(mqgtt_server, 1883);
mgqttClient.setCallback(callback);

// Loop function runs repeatedly after setup
void loop() {
if (!mqttClient.connected()) {
reconnect();

}
mgqttClient.loop();



