
Code Sample
This example demonstrates a simple FreeRTOS queue communication between two tasks ( Task1
and Task2 ) running on an ESP32. Here's how it works:

1. Task1 : This task generates a random integer between 0 and 100, dynamically allocates
memory for it using pvPortMalloc() , and attempts to send the pointer to the integer to a
queue ( xQueue ). If the queue is full and the message cannot be sent, it prints an error
message and frees the allocated memory. After each send attempt, the task delays for 1
second.

2. Task2 : This task waits to receive data from the queue. When a message is received, it
prints the received value and then frees the memory used for the integer.

3. setup() : Initializes the serial communication, creates the queue, and starts the two tasks (
Task1  and Task2 ) pinned to core 1. If the queue creation fails, it prints an error message.

4. loop() : The main Arduino loop remains empty since the tasks are running independently
of it.

Here’s the full code:

QueueHandle_t xQueue;

void Task1(void *pvParameters) {
  int *p;
  while (1) {
    // Dynamically allocate memory for an integer
    p = (int *)pvPortMalloc(sizeof(int));
    *p = random(0, 100); // Generate a random number between 0 and 100
    
    // Attempt to send the pointer to the queue, wait indefinitely if needed
    if (xQueueSend(xQueue, &p, portMAX_DELAY) != pdPASS) {
      Serial.println("Failed to post to queue");
      vPortFree(p); // Free memory if message could not be sent to the queue
    }

    vTaskDelay(1000 / portTICK_PERIOD_MS); // Delay for 1 second
  }
}

void Task2(void *pvParameters) {



Key Points:
Dynamic Memory Allocation: Each task dynamically allocates memory for the integer it
sends, and the receiving task is responsible for freeing that memory after use.
Queue: A queue is created to hold pointers to integers. Both tasks communicate through
this queue.
Core Assignment: The tasks are pinned to core 1 for performance reasons, but this can
be changed based on requirements.

  int *p;
  while (1) {
    // Wait to receive a pointer from the queue, wait indefinitely if needed
    if (xQueueReceive(xQueue, &p, portMAX_DELAY)) {
      Serial.print("Received: ");
      Serial.println(*p); // Print the received value
      vPortFree(p); // Free memory after processing
    }
  }
}

void setup() {
  Serial.begin(115200);

  // Create a queue capable of holding 10 integer pointers
  xQueue = xQueueCreate(10, sizeof(int *));
  
  if (xQueue == NULL) {
    Serial.println("Error creating the queue");
  }

  // Create two tasks pinned to core 1
  xTaskCreatePinnedToCore(Task1, "Task1", 10000, NULL, 1, NULL, 1);
  xTaskCreatePinnedToCore(Task2, "Task2", 10000, NULL, 1, NULL, 1);
  
  vTaskDelete(NULL); // Delete the setup task to free memory
}

void loop() {
  // Empty loop since tasks are handled in FreeRTOS tasks
}



Revision #1
Created 1 October 2024 04:55:23 by AJ
Updated 1 October 2024 04:56:27 by AJ


