Module 8: IOT Platform

Blynk

Introduction

Blynk is a platform that allows you to create and control IoT applications using a smartphone,
tablet, or web browser. You can use Blynk to connect various hardware devices, such as Arduino,
Raspberry Pi, ESP8266, ESP32, and others, to the internet and interact with them through a
graphical user interface. Blynk provides a widget library that you can drag and drop to design your
application, including buttons, sliders, displays, charts, and more. You can also use Blynk to
monitor and analyze data from your sensors, send notifications, and integrate with third-party
services.

By using Blynk with the ESP32, you can easily and quickly prototype your loT projects without
writing complex code or dealing with network protocols. You can use Blynk to control ESP32
outputs, such as LEDs, relays, motors, and more, as well as read inputs from sensors like
temperature, humidity, light, and others. Blynk also allows you to create custom functions and logic
for your ESP32, such as timers, triggers, and actions.

Setting Up Blynk

Please download the Blynk app on your smartphone. For more information on how to register an
account, create a template, configure datastreams, set up the web dashboard, and configure the
mobile dashboard, you can watch this video tutorial.

Blynk Syntax

Blynk events are actions that occur when you interact with your Blynk application or when your
hardware sends or receives data from the Blynk server. You can use Blynk events to control the
logic and behavior of your ESP32, such as turning devices on or off, reading or writing data,
performing calculations, and more. You can handle Blynk events using Blynk library functions and

Arduino sketches.
The Blynk library provides several functions you can use to handle Blynk events, such as:

e Blynk.begin(): This function initializes the Blynk connection and connects your ESP32 to
your Blynk project. You need to call this function in the setup() function of your Arduino
sketch and provide your WiFi credentials and Blynk authentication token as parameters.
Example:

void setup() {
Serial.begin(115200);
// Initialize Blynk connection
Blynk.begin(auth, ssid, pass);
}

e Blynk.run(): This function runs the Blynk process and handles communication between
your ESP32 and your Blynk project. You need to call this function in the loop() function of
your Arduino sketch, ensuring it is not blocked by long-running code. Example:

void loop() {
// Run Blynk process
Blynk.run();

}

o« BLYNK_WRITE(): This function is a macro that defines a callback function executed when
a widget writes a value to a pin on your ESP32. You can use this function to handle events
triggered by your Blynk app, such as pressing a button, moving a slider, or sending a
command. You need to specify the pin number as a parameter and use the BlynkParam
object to access the value. Example:

// Define a callback function for pin V1
BLYNK_WRITE(V1) {

/] Get value from widget

int value = param.asInt();

// Do something with the value

Serial.printin(value);

Blynk.virtualWrite(): This function writes a value to a virtual pin in your Blynk project.
You can use this function to send data from your ESP32 to your Blynk app, such as sensor
readings, status updates, or custom messages. You need to specify the virtual pin number
and the value as parameters. You can also specify the data type, such as int, float, string
, or array . Example:

/] Write value to pin V2
Blynk.virtualWrite(V2, 123);

/I Write string to pin V3
Blynk.virtualWrite(V3, "Hello Blynk");
// Write array to pin V4

intarray[] = {1, 2, 3,4, 5};
Blynk.virtualWrite(V4, array, 5);

e BLYNK_READ(): This function is a macro that defines a callback function executed when
a widget reads a value from a pin on your ESP32. You can use this function to handle
events triggered by your Blynk app, such as sensor value requests, display updates, or
chart refreshes. You need to specify the pin number as a parameter and use the
Blynk.virtualWrite() function to send the value. Example:

/] Define a callback function for pin V5
BLYNK_READ(V5) {

/I Read value from sensor

int value = analogRead(A0);

/] Send value to widget

Blynk.virtualWrite(V5, value);

Extras

Blynk also offers several advanced features that you can use to enhance your ESP32 project, such
as:

e Virtual Pins: Virtual pins are pins that do not correspond to physical pins on your ESP32
but are linked to virtual pins in your Blynk project. You can use virtual pins to exchange
various types of data between your ESP32 and Blynk app, such as strings, arrays, or
custom objects. Virtual pins also allow you to implement custom functions and logic for
your ESP32, such as timers, triggers, and actions. To use virtual pins, you need to use the
BLYNK_WRITE() , Blynk.virtualWrite() , and BLYNK_READ() functions, as explained in the
previous section.

e Blynk.syncVirtual(): This function synchronizes the value of a virtual pin between your
ESP32 and your Blynk app. You can use this function to update widget values in your
Blynk app with values from your ESP32, or vice versa. This function can also trigger the
BLYNK _WRITE() or BLYNK READ() callback functions for the virtual pin. You need to specify
the virtual pin number as a parameter. Example:

/I Sync the value of pin V6 from ESP32 to the Blynk app
Blynk.syncVirtual(V6);

/1 Sync the value of pin V7 from the Blynk app to ESP32

/I This will also execute the BLYNK_WRITE(V7) callback function
Blynk.syncVirtual(V7);

e Custom Functions: Custom functions are functions that you can define in your Arduino
sketch to perform specific tasks or actions for your ESP32. You can use custom functions
to implement complex logic and behavior for your ESP32, such as controlling multiple
devices, performing calculations, sending notifications, and more. Custom functions can
also handle events from your Blynk app, such as pressing buttons, moving sliders, or
sending commands. To use custom functions, use the BLYNK WRITE() function to call the
custom function and pass the widget value as a parameter. Example:

/] Define a custom function to blink an LED
void blinkLED(int value) {

// Turn on the LED

digitalWrite(LED_BUILTIN, HIGH);

/] Wait for the specified value in milliseconds

delay(value);

/] Turn off the LED

digitalWrite(LED_BUILTIN, LOW);

// Wait for the specified value in milliseconds

delay(value);

/I Call the custom function from pin V8
BLYNK_WRITE(V8) {

/] Get the value from the widget

int value = param.aslint();

// Call the custom function

blinkLED(value);

Example Code

Before running this code, you need to install the Blynk library in the Arduino IDE.

Blynk by Volodymyr Shymanskyy

Build a smartphone app for your project in minutes! It supports
WiFi, Ethernet, Cellular connectivity. Works with over 400 boards
like ESP8266, ESP32, Arduino, Raspberry Pi, Particle, etc.

In this example, we will use Blynk and ESP32 to monitor temperature and humidity in a room using
the DHT11 sensor (if used, don't forget to install the DHT library first). We will also display the
sensor readings on the LCD widget and gauge widget in the Blynk app. Additionally, we will use the
LED widget to indicate the connection status of the ESP32. The circuit diagram and code can be
seen below:

// Include the Blynk and DHT libraries
#include <BlynkSimpleEsp32.h>
#include <DHT.h>

#include <WiFi.h>

#include <WiFiClient.h>

// Define Blynk authentication token

#define BLYNK_TEMPLATE_ID "YourTemplatelD"
#define BLYNK_DEVICE_NAME "YourDeviceName"
#define BLYNK_AUTH_TOKEN "YourToken"

// Define WiFi credentials
char ssid[] = "YourNetworkName";

char pass[] = "YourPassword";

/I Define DHT sensor type and pin
#define DHTTYPE DHT11
#define DHTPIN 4

/I Create DHT object
DHT dht(DHTPIN, DHTTYPE);

https://learn.digilabdte.com/uploads/images/gallery/2024-11/PRl967ktV7E8e9FB-screenshot-2024-11-14-at-10-54-17.png

// Define virtual pins for widgets
#define LED_VPIN VO

#define LCD_VPIN V1

#define GAUGE_VPIN V2

// Define LED pin
#define LED_PIN 25

/] Define update interval in milliseconds

#define UPDATE_INTERVAL 2000

/] Create a timer object

BlynkTimer timer;

/I Define function to read and send sensor data
void sendSensorData() {
// Read temperature and humidity from sensor
float temperature = dht.readTemperature();

float humidity = dht.readHumidity();

/l Check if readings are valid
if (isnan(temperature) || isnan(humidity)) {
// Display error message on LCD widget
Blynk.virtualWrite(LCD_VPIN, "clear");
Blynk.virtualWrite(LCD_VPIN, 0, O, "DHT Sensor");
Blynk.virtualWrite(LCD_VPIN, 0, 1, "error");
} else {
/] Display readings on LCD widget
Blynk.virtualWrite(LCD_VPIN, "clear");
Blynk.virtualWrite(LCD_VPIN, 0, 0, "Temp: " + String(temperature) + " C");
Blynk.virtualWrite(LCD_VPIN, 0, 1, "Humidity: " + String(humidity) + " %");
// Display readings on gauge widget
Blynk.virtualWrite(GAUGE_VPIN, temperature);

/I Define function to indicate connection status
void indicateConnection() {

/I Check if ESP32 is connected to Blynk

if (Blynk.connected()) {

// Turn on LED widget
Blynk.virtualWrite(LED_VPIN, 255);
} else {
/] Turn off LED widget
Blynk.virtualWrite(LED_VPIN, 0);
}
}

/] Define function to handle button events
BLYNK_WRITE(25) {
/I Get the value from the button widget
int value = param.asint();
// Write value to LED pin
digitalWrite(LED_PIN, value);

void setup() {
// Initialize serial communication

Serial.begin(115200);

/I Initialize Blynk connection

Blynk.begin(BLYNK AUTH_TOKEN, ssid, pass);

// Initialize DHT sensor

dht.begin();

// Initialize LED pin
pinMode(LED_PIN, OUTPUT);

// Set LED widget to off
Blynk.virtualWrite(LED_VPIN, 0);

/I Clear LCD widget
Blynk.virtualWrite(LCD_VPIN, "clear");

/I Set gauge widget to 0
Blynk.virtualWrite(GAUGE_VPIN, 0);

/I Set timer to call sendSensorData function every UPDATE_INTERVAL milliseconds
timer.setinterval(UPDATE_INTERVAL, sendSensorData);

/I Set timer to call indicateConnection function every 100 milliseconds
timer.setinterval(100, indicateConnection);

}

void loop() {
// Run Blynk process
Blynk.run();
// Run timer process

timer.run();

Instructions for the Blynk app:

1. Open the Blynk app and create a new project with the ESP32 device model and WiFi
connection type. Copy the authentication token and paste it into the code.

2. Add an LED widget and assign it to pin VO. Set the color to green.

3. Add an LCD widget and assign it to pin V1. Set the advanced mode to ON and the text
color to blue.

4. Add a gauge widget and assign it to pin V2. Set the range to 0-50 and the text color to
red.

5. Select a button widget. Tap the button widget to open its settings. Set the name to "LED
Control" and the color to green. Set the output to digital pin 25 and the mode to switch.
This will link the button to the LED pin on the ESP32.

6. Upload the code to the ESP32 and run the project. You should see temperature and
humidity readings on the LCD and gauge widgets. You should also see the LED widget
light up when the ESP32 is connected to Blynk.

Revision #1
Created 14 November 2024 03:46:32 by AM
Updated 14 November 2024 03:56:30 by AM

