
OpenSSL
This guide provides instructions on using OpenSSL to:

1. Test SSL/TLS connections with a server.
2. Generate a new private key and a self-signed certificate for client authentication.

1. Testing SSL/TLS Connection with
openssl s_client
The openssl s_client command is a tool for checking SSL/TLS connections with servers. It’s
commonly used to verify if a server's certificate is valid and to view the server’s full certificate
chain.

Command:

Explanation:
s_client : Starts an SSL/TLS client connection.
-connect {Host}:{Port} : Connects to the specified server and port (replace {Host} and
{Port} with the appropriate values for your server, e.g., broker.hivemq.com:8883 or
www.typicode.com:443).
-showcerts : Displays all certificates in the server’s certificate chain.

Steps:
1. Finding Server Common Name

Open your browser and find the settings like below then click on "Connection is secure".

openssl s_client -connect {Host}:{Port} -showcerts

Image not found or type unknown

Click on "Certificate is valid"

Image not found or type unknown

Here you can find the server's common name which will be our host which is typicode.com. If it is a
web server, then you need to add www. in front of the CN. Hence, our host is www.typicode.com

Image not found or type unknown

2. Finding your Port

For the port, you need to know which protocol you are using.

Ports that we will be using in this module :

HTTPS → 443
MQTTS → 8883

So in this example, if we want to connect and hit the API from
https://jsonplaceholder.typicode.com, our {Host}:{Port} combination will be
www.typicode.com:443

3. Run the Command

Then you need to scroll down and get the LAST certificate.

Image not found or type unknown

This will be your server's root CA.

openssl s_client -connect www.typicode.com:443 -showcerts

2. Generating a New RSA Key and
Self-Signed Certificate with openssl
req
This command generates a new private key and a self-signed certificate, which can be used for
client authentication.

Command:

Explanation:
-req: Starts a new certificate request or generates a self-signed certificate.
-newkey rsa:2048: Creates a new RSA key with a size of 2048 bits.
-nodes: Ensures the private key is created without password encryption.
-keyout client_key.pem: Saves the generated private key in client_key.pem.
-x509: Generates a self-signed certificate instead of a certificate signing request (CSR).
-days 365: Sets the certificate to be valid for 365 days.
-out client_cert.pem: Outputs the certificate to client_cert.pem.

Steps:
1. Run the Command

Enter the command in your terminal to generate the private key and certificate.

2. Provide Certificate Details

Note, for testing purposes of this module, you can skip this step and fill blanks in all details.

You’ll be prompted to enter information like Country, State, Organization, Common Name (CN), and
Email Address. These fields will be included in the certificate’s Subject field. The Common Name
(CN) field is important, as it typically contains the hostname of the server or a unique identifier for
the client in a client certificate setup. Check Output Files:

3. After completion, you should find two new files

openssl req -newkey rsa:2048 -nodes -keyout client_key.pem -x509 -days 365 -out client_cert.pem

client_key.pem: This is your private key. Keep it secure, as it identifies you in a client-server
interaction.

client_cert.pem: This is your self-signed certificate, which can be provided to a server for
authentication if client certificate verification is set up.

You can open them with notepad to see the certificate

Revision #2
Created 3 November 2024 16:37:08 by Giovan Christoffel Sihombing
Updated 7 November 2024 03:08:06 by Giovan Christoffel Sihombing

